
Concept explainers
Review Question 21.1 Your friend thinks that relative motion of a coil and a magnet is absolutely necessary to induce current in a coil that is not connected to a battery Support your friend’s point of view with a physics argument. Then provide a counterargument and describe an experiment you could perform to disprove your friend's idea.

A physics argument that relative motion between a magnet and a coil is absolutely necessary to induce current in the coil which is not connected to a battery. Also, provide a counterargument and disprove the above statement with the help of an experiment.
Answer to Problem 1RQ
Solution:
“Whenever the magnetic field flux through an area which is enclosed by a closed conducting loop (coil) changes, a current is induced in the loop (coil)”. So, in order to change the flux, a relative motion between the coil and the magnet must be provided.
A counterstatement for the above statement is, ‘in order to induce current in the coil, the magnetic flux can be changed in a number of ways and not just by providing a relative motion between the magnet and coil.’ The flux can be changed by manipulating the magnitude of the magnetic field
Experiment- Take a magnet with a controllable magnetic field, and fix its position relative to the coil. Now increase the magnitude of the magnetic field. As the field changes, it produces a change in the magnetic flux, thus inducing an EMF and hence, a current is induced in the coil without relative motion between the magnet and the coil.
Explanation of Solution
Introduction:
Whenever the magnetic field flux through an area which is enclosed by a closed conducting loop (coil) changes, an EMF (Electromotive force) is produced in the loop.
The equation for Faraday’s Law of Electromagnetic Induction is:
Here,
Explanation:
According to Faraday’s Law, whenever there is a change in the magnetic flux of the coil, an EMF is induced in the coil. The induced EMF results in an induced current inside the coil. The most common way to produce this EMF is to move the magnet or magnetic field relative to the coil or vice versa. By doing so, the flux across the coil changes and current is induced.
But contradictory to the general belief, the magnetic flux can be changed by other ways also. One way to change the magnetic flux is to change the magnitude of the magnetic field at the site of the loop.
Consider a coil of area
Now, write the expression for magnetic flux.
And,
Here,
Substitute
Similarly, substitute
Now, the equation of induced EMF (
Here,
Substitute
Induced current
Here,
Substitute
Here, the negative sign denotes the direction of EMF.
Hence, an induced current has been achieved without the relative motion of the coil and magnet.
As discussed in the experiment, a change in the magnitude of magnetic field results in an induced current.
Another way is to change the area of the loop. The magnetic flux (
So, a change in area causes a change in magnetic flux, thereby inducing a current in the coil.
Also, a change in the direction of area vector and magnetic field vector can cause an induced current to develop in the coil.
Conclusion:
The statement that a relative motion between the coil and the magnet is absolutely necessary, has been subjected to a physics argument. A counterstatement has also been provided, which is proven with the help of an experiment that current in a coil can also be induced by changing the magnetic field, as given by Faraday’s law.
Want to see more full solutions like this?
Chapter 21 Solutions
College Physics
- No chatgpt pls will upvotearrow_forwardYou are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forward
- A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forwardWhat are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forward
- A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forward
- Describe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





