A pitcher throws a 0.142-kg baseball at 47.2 m/s. As it travels 16.8 m to home plate, the ball slows down to 42.5 m/s because of air resistance. Find the change in temperature of the air through which it passes. To find the greatest possible temperature change, you may make the following assumptions. Air has a molar specific heat of C P = 7 2 I R and an equivalent molar mass of 28.9 g/mol. The process is so rapid that the cover of the baseball acts as thermal insulation and the temperature of the ball itself does not change. A change in temperature happens initially only for the air in a cylinder 16.8 m in length and 3.70 cm in radius. This air is initially at 20.0°C.
A pitcher throws a 0.142-kg baseball at 47.2 m/s. As it travels 16.8 m to home plate, the ball slows down to 42.5 m/s because of air resistance. Find the change in temperature of the air through which it passes. To find the greatest possible temperature change, you may make the following assumptions. Air has a molar specific heat of C P = 7 2 I R and an equivalent molar mass of 28.9 g/mol. The process is so rapid that the cover of the baseball acts as thermal insulation and the temperature of the ball itself does not change. A change in temperature happens initially only for the air in a cylinder 16.8 m in length and 3.70 cm in radius. This air is initially at 20.0°C.
Solution Summary: The author explains the formula to determine the change in temperature of the air through which it passes.
A pitcher throws a 0.142-kg baseball at 47.2 m/s. As it travels 16.8 m to home plate, the ball slows down to 42.5 m/s because of air resistance. Find the change in temperature of the air through which it passes. To find the greatest possible temperature change, you may make the following assumptions. Air has a molar specific heat of CP =
7
2
I
R and an equivalent molar mass of 28.9 g/mol. The process is so rapid that the cover of the baseball acts as thermal insulation and the temperature of the ball itself does not change. A change in temperature happens initially only for the air in a cylinder 16.8 m in length and 3.70 cm in radius. This air is initially at 20.0°C.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.