Concept explainers
(a)
The numerical value of the
(a)
Answer to Problem 21.67AP
The numerical value of the
Explanation of Solution
Value of average speed is
Write the expression for the Maxwell-Boltzmann speed distribution function,
Here,
Write the expression for the average speed of a gas molecule.
Here,
Write the expression for the most probable speed of a gas molecule.
Here,
Write the formula to calculate the numerical value of the
Substitute
Conclusion:
Substitute
Thus, the numerical value of the
(b)
The numerical value of the
(b)
Answer to Problem 21.67AP
The numerical value of the
Explanation of Solution
Value of average speed is
From equation (3), Write the formula to calculate the numerical value of the
Conclusion:
Substitute
Thus, the numerical value of the
(c)
The numerical value of the
(c)
Answer to Problem 21.67AP
The numerical value of the
Explanation of Solution
Value of average speed is
Recall equation (3)
Conclusion:
Substitute
Therefore, the numerical value of the
(d)
The numerical value of the
(d)
Answer to Problem 21.67AP
The numerical value of the
Explanation of Solution
Value of average speed is
Recall equation (3)
Conclusion:
Substitute
Therefore, the numerical value of the
(e)
The numerical value of the
(e)
Answer to Problem 21.67AP
The numerical value of the
Explanation of Solution
Value of average speed is
Recall equation (3)
Conclusion:
Substitute
Thus, the numerical value of the
(f)
The numerical value of the
(f)
Answer to Problem 21.67AP
The numerical value of the
Explanation of Solution
Value of average speed is
Recall equation (3),
Conclusion:
Substitute
Thus, the numerical value of the
(g)
The numerical value of the
(g)
Answer to Problem 21.67AP
The numerical value of the
Explanation of Solution
Reacall equation (3)
Conclusion:
Substitute
Thus, the numerical value of the
Want to see more full solutions like this?
Chapter 21 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forwardOnly Part B.) is necessaryarrow_forward
- A (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward
- 4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forwardThree point charges of magnitudes Q₁ = +6.0 μС, Q₂ = −7.0 μС, Qз = −13.0 μC are placed on the x-axis at x = 0 cm, x = 40 cm, and x = 120 cm, respectively. What is the force on the Q3 due to the other two charges?arrow_forwardTwo point charges of +30.0 μС and -9.00 μC are separated by a distance of 20.0 cm. What is the intensity of electric field E midway between these two charges?arrow_forward
- Two point charges of +7.00 μС and +10.0 μС are placed inside a cube of edge length 0.100 m. What is the net electric flux due to these charges?arrow_forwardA conducting hollow sphere has a charge density of σ = 12.2 μC/m². If the sphere has a radius of 25 cm, what net charge is on the sphere?arrow_forward9) Consider an electric field right Ĕ = 21+3ĵ. What is the magnitude of the flux of this field through a 4.0 m² square surface whose corners are located at (x,y,z) = (0, 2, 1), (2, 2, 1), (2, 2, −1), (0, 2, −1)? Ꮓ ту x (0,2,1) Surface 2 Surface (2,2,1) y Ē (0,2,-1) (2,2,-1) 2 xarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning