
A certain ideal gas has a molar specific heat of Cv =
(a)

The final pressure, final volume, final temperature, change in the internal energy, the energy added to the gas by heat and the work done on the gas.
Answer to Problem 21.51AP
The final pressure is
Explanation of Solution
Given info: The molar specific heat of the gas at constant volume is
The value of universal gas constant is
The gas is heated at constant pressure.
Write the expression for molar specific heat of the gas at constant pressure.
Here,
Substitute
The gas is heated at constant pressure, therefore the final pressure of the gas is equal to the initial pressure of the gas.
The expression for the final pressure of the gas is,
Here,
Substitute
The final pressure of the gas is
The final temperature is the temperature to which the gas is heated.
The value of final temperature of the gas is,
Write the expression for the change in the temperature of the gas.
Here,
Substitute
The ideal gas equation is,
Here,
Rearrange the above equation for the value of
Substitute
Substitute
Thus, the final volume of the gas is
The expression for the change in the internal energy of the gas is,
Substitute
Substitute
Thus the change in the internal energy of the gas is
The expression for the energy added to the gas by heat is,
Substitute
Substitute
Thus the energy added to the gas by heat is
The formula for the work done on the gas is,
Substitute
Thus the work done on the gas is
Conclusion:
Therefore, for the gas, the final pressure is
(b)

The final pressure, final volume, final temperature, change in the internal energy, the energy added to the gas by heat and the work done on the gas.
Answer to Problem 21.51AP
For the gas, the final pressure is
Explanation of Solution
Given info: The molar specific heat of the gas at constant volume is
The value of universal gas constant is
The gas is heated at constant volume.
The gas is heated at constant volume, therefore the final volume of the gas is equal to the initial pressure of the gas.
The formula or ideal gas is,
Rearrange the above equation for the value of
Substitute
Write the expression for the final volume of the gas.
Substitute
Substitute
Thus, the final volume of the gas is
The final temperature is the temperature to which the gas is heated.
The value of final temperature of the gas is,
Write the expression for the change in the temperature of the gas.
Here,
Substitute
Write the expression for ideal gas.
Rearrange the above equation for the value of
Substitute
Substitute
Divide equation (2) from equation (1).
Substitute
The expression for the change in the internal energy of the gas is,
Substitute
Substitute
Thus the change in the internal energy of the gas is
The formula for the energy added to the gas by heat for constant volume is,
Substitute
Substitute
Substitute
Thus the energy added to the gas by heat is
The forrmula for the work done on the gas is,
Substitute
Thus the work done on the gas is
Conclusion:
Therefore, for the gas, the final pressure is
(c)

The final pressure, final volume, final temperature, change in the internal energy, the energy added to the gas by heat and the work done on the gas.
Answer to Problem 21.51AP
For the gas, the final pressure is
Explanation of Solution
Given info: The molar specific heat of the gas at constant volume is
The value of universal gas constant is
The gas is compressed at constant temperature.
The gas is heated at constant volume, therefore the final volume of the gas is equal to the initial pressure of the gas.
The formula for ideal gas is,
Rearrange the above equation for the value of
Substitute
Substitute
Thus, the initial volume of the gas is
Substitute
Substitute
Thus, the final volume of the gas is
The expression for the final temperature of the gas is,
Substitute
The final temperature of the gas is
The expression for the change in the temperature of the gas is,
Substitute
The final pressure of the gas is the pressure at which the gas is compressed.
The value of final; pressure of the gas is,
The expression for the change in the internal energy of the gas is,
Substitute
Substitute
Thus the change in the internal energy of the gas is
The expression for the work done on the gas is,
Divide and multiply the above equation by
Substitute
Substitute
Thus, the work done on the system is
The expression for the energy added to the gas by heat for constant volume is,
Substitute
Thus the energy added to the gas by heat is
Conclusion:
Therefore, for the gas, the final pressure is
(d)

The final pressure, final volume, final temperature, change in the internal energy, the energy added to the gas by heat and the work done on the gas.
Answer to Problem 21.51AP
For the gas, the final pressure is
Explanation of Solution
Given info: The molar specific heat of the gas at constant volume is
The value of universal gas constant is
The gas is compressed adiabatically to the final pressure.
The value of the final pressure is,
Thus, the value of the final pressure is
The expression for the ratio of the specific heats is,
Substitute
The expression for an adiabatic process for the initial condition of gas is,
Here,
The expression for an adiabatic process for the final condition of gas is,
Divide equation (4) by equation (3).
Rearrange the above equation for the value of
Substitute
Thus, the final value of the volume is
The expression for ideal gas is,
Rearrange the above equation .
Substitute
Substitute
Divide equation (7) by equation (6).
Rearrange the above expression for the value of
Substitute
The expression for the change in the temperature of the gas is,
Here,
Substitute
Thus the change in the temperature is
The expression for the change in the internal energy of the gas is,
Substitute
Substitute
Thus the change in the internal energy of the gas is
The adiabatic process is insulated to heat supplied externally.
The expression for the energy added to the gas by heat is,
Thus the energy added to the gas by heat is
The expression for the work done on the gas is,
Substitute
Thus the work done on the gas is
Conclusion:
Therefore, for the gas, the final pressure is
Want to see more full solutions like this?
Chapter 21 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forwardPhysics different from a sea breeze from a land breezearrow_forward
- File Preview Design a capacitor for a special purpose. After graduating from medical school you and a friend take a three hour cruise to celebrate and end up stranded on an island. While looking for food, a spider falls on your friend giving them a heart attack. Recalling your physics, you realize you can build a make-shift defibrillator by constructing a capacitor from materials on the boat and charging it using the boat's battery. You know that the capacitor must hold 100 J of energy and be at 1000 V (fortunately this is an electric boat which has batteries that are 1000 V) to work. You decide to construct the capacitor by tightly sandwiching a single layer of Saran wrap between sheets of aluminum foil. You read the Saran wrap box and fortunately they tell you that it has a thickness 0.01 mm and dielectric constant of 2.3. The Saran wrap and foil are 40 cm wide and very long. How long is the final capacitor you build that saves your friend?arrow_forwardHow do I plot the force F in Matlba (of gravity pulling on the masses) versus spring displacement, and fit the data with a linear function to find the value for the spring constant. To get a linear fit, use polynomial order 1. Report the value of 'k' from the fit. What code is used?arrow_forwardOk im confused on this portion of the questions being asked. the first snip is the solution you gave which is correct. BUt now it is asking for this and im confused. The magnitude of the force F_11 is __________LB. The direction of the force F_11 is __________LB.arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





