
Concept explainers
(a)
Interpretation:
Given equation has to be completed and balanced.
(a)

Explanation of Solution
Given equation is written as shown below.
Sum of the
Sum of atomic number on the reactant side is 28. Atomic number of the missing element is found to be 26, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 26 is iron.
Sum of mass number on the reactant side is 58. Mass number of the missing element is found to be 56, by finding the difference between the mass number on reactant side and product side. Therefore, the element iron has a mass number of 56. Complete equation can be given as shown below.
(b)
Interpretation:
Given equation has to be completed and balanced.
(b)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the product side is 13. Atomic number of the missing element is found to be 13, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 13 is aluminium.
Sum of mass number on the product side is 28. Mass number of the missing element is found to be 27, by finding the difference between the mass number on reactant side and product side. Therefore, the element aluminium has a mass number of 27. Complete equation can be given as shown below.
(c)
Interpretation:
Given equation has to be completed and balanced.
(c)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the reactant side is 100. Atomic number of the missing element is found to be 100, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 100 is fermium.
Sum of mass number on the reactant side is 254. Mass number of the missing element is found to be 249, by finding the difference between the mass number on reactant side and product side. Therefore, the element fermium has a mass number of 249. Complete equation can be given as shown below.
(d)
Interpretation:
Given equation has to be completed and balanced.
(d)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the product side is 43. Atomic number of the missing element is found to be 1, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 1 is hydrogen.
Sum of mass number on the product side is 98. Mass number of the missing element is found to be 2, by finding the difference between the mass number on reactant side and product side. Therefore, the element hydrogen has a mass number of 2. Complete equation can be given as shown below.
(e)
Interpretation:
Given equation has to be completed and balanced.
(e)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the reactant side is 103. Atomic number of the missing element is found to be 103, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 103 is lawrencium.
Sum of mass number on the reactant side is 261. Mass number of the missing element is found to be 256, by finding the difference between the mass number on reactant side and product side. Therefore, the element lawrencium has a mass number of 256. Complete equation can be given as shown below.
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry Principles And Practice
- 3. Name this ether correctly. H₁C H3C CH3 CH3 4. Show the best way to make the ether in #3 by a Williamson Ether Synthesis. Start from an alcohol or phenol. 5. Draw the structure of an example of a sulfide.arrow_forward1. Which one(s) of these can be oxidized with CrO3 ? (could be more than one) a) triphenylmethanol b) 2-pentanol c) Ethyl alcohol d) CH3 2. Write in all the product(s) of this reaction. Label them as "major" or "minor". 2-methyl-2-hexanol H2SO4, heatarrow_forward3) Determine if the pairs are constitutional isomers, enantiomers, diastereomers, or mesocompounds. (4 points)arrow_forward
- In the decomposition reaction in solution B → C, only species C absorbs UV radiation, but neither B nor the solvent absorbs. If we call At the absorbance measured at any time, A0 the absorbance at the beginning of the reaction, and A∞ the absorbance at the end of the reaction, which of the expressions is valid? We assume that Beer's law is fulfilled.arrow_forward> You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Consider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forwardWhat is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward
- 7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward7 Comment on the general features of the predicted (extremely simplified) ¹H- NMR spectrum of lycopene that is provided below. 00 6 57 PPM 3 2 1 0arrow_forwardIndicate the compound formula: dimethyl iodide (propyl) sulfonium.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning





