
Concept explainers
(a)
Interpretation:
Given equation has to be completed and balanced.
(a)

Explanation of Solution
Given equation is written as shown below.
Sum of the
Sum of atomic number on the reactant side is 103. In the product side also the atomic number is equal to 103. Therefore, the missing particle has an atomic number of zero.
Sum of mass number on the reactant side is 259. Mass number of the missing element is found to be 2, by finding the difference between the mass number on reactant side and product side. Therefore, the particle that has mass number 2 and atomic number zero has to be two neutrons. Complete equation can be given as shown below.
(b)
Interpretation:
Given equation has to be completed and balanced.
(b)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the reactant side is 8. Atomic number of the missing element is found to be 6, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 6 is carbon.
Sum of mass number on the reactant side is 15. Mass number of the missing element is found to be 11, by finding the difference between the mass number on reactant side and product side. Therefore, the element that has mass number 11 and atomic number 6 is carbon. Complete equation can be given as shown below.
(c)
Interpretation:
Given equation has to be completed and balanced.
(c)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the reactant side is 92. Atomic number of the missing element is found to be 93, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 93 is neptunium.
Sum of mass number on the reactant side is 239. Mass number of the missing element is found to be 239, by finding the difference between the mass number on reactant side and product side. Therefore, the element has mass number 239 and atomic number 93. Complete equation can be given as shown below.
(d)
Interpretation:
Given equation has to be completed and balanced.
(d)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the reactant side is 3. Atomic number of the missing element is found to be 1, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 1 is hydrogen.
Sum of mass number on the reactant side is 7. Mass number of the missing element is found to be 3, by finding the difference between the mass number on reactant side and product side. Therefore, the element has mass number 3 and atomic number 1. Complete equation can be given as shown below.
(e)
Interpretation:
Given equation has to be completed and balanced.
(e)

Explanation of Solution
Given equation is written as shown below.
Sum of the atomic numbers on the reactant side has to be equal to the sum of atomic numbers on the product side. Sum of mass number on the reactant side has to be equal to the sum of mass number on the product side.
Sum of atomic number on the product side is 6. Atomic number of the missing element is found to be 4, by finding the difference between the atomic number on reactant side and product side. The element with atomic number 4 is beryllium.
Sum of mass number on the product side is 13. Mass number of the missing element is found to be 9, by finding the difference between the mass number on reactant side and product side. Therefore, the element beryllium has a mass number of 9. Complete equation can be given as shown below.
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry Principles And Practice
- Draw the stepwise mechanism for the reactionsarrow_forwardPart I. a) Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone b) Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone (3,3-dimethyl-2-butanone) and 2, 3-dimethyl - 1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forward3. The explosive decomposition of 2 mole of TNT (2,4,6-trinitrotoluene) is shown below: Assume the C(s) is soot-basically atomic carbon (although it isn't actually atomic carbon in real life). 2 CH3 H NO2 NO2 3N2 (g)+7CO (g) + 5H₂O (g) + 7C (s) H a. Use bond dissociation energies to calculate how much AU is for this reaction in kJ/mol.arrow_forward
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone and (3,3-dimethyl-2-butanone) 2,3-dimethyl-1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forwardShow the mechanism for these reactionsarrow_forwardDraw the stepwise mechanismarrow_forward
- Draw a structural formula of the principal product formed when benzonitrile is treated with each reagent. (a) H₂O (one equivalent), H₂SO₄, heat (b) H₂O (excess), H₂SO₄, heat (c) NaOH, H₂O, heat (d) LiAlH4, then H₂Oarrow_forwardDraw the stepwise mechanism for the reactionsarrow_forwardDraw stepwise mechanismarrow_forward
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: a) Give the major reason for the exposure of benzophenone al isopropyl alcohol (w/acid) to direct sunlight of pina colone Mechanism For b) Pinacol (2,3-dimethy 1, 1-3-butanediol) on treatment w/ acid gives a mixture (3,3-dimethyl-2-butanone) and 2, 3-dimethyl-1,3-butadiene. Give reasonable the formation of the productsarrow_forwardwhat are the Iupac names for each structurearrow_forwardWhat are the IUPAC Names of all the compounds in the picture?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





