![Chemistry: The Molecular Nature of Matter and Change - Standalone book](https://www.bartleby.com/isbn_cover_images/9780073511177/9780073511177_largeCoverImage.gif)
(a)
Interpretation:
The direction of electron flow in external circuit has to be identified.
Concept Introduction:
An
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
Redox reaction: Redox reaction is a type of
(b)
Interpretation:
The half-cell at which oxidation occurs has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
Anode: The electrode where the oxidation occurs is called as an anode. It is negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is positively a charged electrode.
Redox reaction: Redox reaction is a type of chemical reaction, where both the oxidation and reduction occur at the same time. In a redox reaction, one of the reactant is oxidized and the other is reduced simultaneously.
(c)
Interpretation:
The half-cell at which the electrons enter has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
(d)
Interpretation:
The electrode at which electrons are consumed has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Oxidation - Loss of electrons by a species.
(e)
Interpretation:
The negatively charged electrode has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
(f)
Interpretation:
The electrode that decreases in mass during the operation of given cell has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
(g)
Interpretation:
The electrolyte solution in cathode compartment has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
(h)
Interpretation:
The ion pairs suitable for salt bridge has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
(i)
Interpretation:
For which electrode the inactive material could be used has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
(j)
Interpretation:
The direction at which anion movement occur within the salt bridge in order to maintain the neutrality has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
(k)
Interpretation:
The balanced half reactions and the overall cell reaction has to be indicated.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.
The electrons flow from anode to cathode through the external wire of the circuit. A salt bridge is used to complete the cell circuit.
Salt bridge: It is a U-shaped tube filled with concentrated solution of inert electrolytes such as
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 21 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- Shown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H. Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem. A strong band was observed in the IR at 1717 cm-1arrow_forwardPredict the major products of the organic reaction below. : ☐ + Х ك OH 1. NaH 2. CH₂Br Click and drag to start drawing a structure.arrow_forwardNG NC 15Show all the steps you would use to synthesize the following products shown below using benzene and any organic reagent 4 carbons or less as your starting material in addition to any inorganic reagents that you have learned. NO 2 NC SO3H NO2 OHarrow_forward
- Please draw a stepwise mechanism for this reaction.arrow_forwardPlease show full mechanism for this equation, all arrows and resonance. I would like to see the mechanisms for para, ortho, and meta positions! Thank youarrow_forward1 Please provide an efficient synthesis of the product below from the starting material. Use the starting material as the ONLY source of carbon atoms. Show the synthesis of each compound that would be used in the overall synthesis of the product. [This synthesis uses alkyne and alcohol chemistry.]arrow_forward
- 10- 4000 20 20 30- %Reflectance 60 50- 09 60- 40- Date: Thu Feb 06 17:30:02 2025 (GMT-05:0(UnknownP Scans: 8 Resolution: 2.000 70 70 88 80 3500 3000 2500 90 100 00 Wavenumbers (cm-1) 2000 1500 2983.10 2359.13 1602.52 1584.22 1451.19 1391.87 1367.07 1314.37 1174.34 1070.13 1027.33 1714.16 1269.47 1000 1106.08 1001.14 937.02 873.60 850.20 780.22 686.91 674.38 643.09 617.98 02/06/25 16:38:20arrow_forwardd. Draw arrow-pushing mechanism for an enzymatic retro-aldol reaction of the following hexose. Use B: and/or HA as needed. OH OH سية HO OH OHarrow_forward4. Calculate the wavelength of a photon needed to excite a transition between neighbouring energy levels of a harmonic oscillator of effective mass equal to that of an oxygen atom and with a force constant of 544 N m¹.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)