BIO Base Pairing in DNA, I. The two sides of the DNA double helix are connected by pairs of bases (adenine, thymine, cytosine, and guanine). Because of the geometric shape of these molecules, adenine bonds with thymine and cytosine bonds with guanine. Figure E21.21 shows the bonding of thymine and adenine. Each charge shown is ±e, and the H—N distance is 0.110 nm. (a) Calculate the net force that thymine exerts on adenine. Is it attractive or repulsive? To keep the calculations fairly simple, yet reasonable, consider only the forces due to the O—H—N and the N—H—N combinations, assuming that these two combinations are parallel to each other. Remember, however, that in the O—H—N set, the O − exerts a force on both the H + and the N − , and likewise along the N—H—N set. (b) Calculate the force on the electron in the hydrogen atom, which is 0.0529 nm from the proton. Then compare the strength of the bonding force of the electron in hydrogen with the bonding force of the adenine-thymine molecules. Figure E21.21
BIO Base Pairing in DNA, I. The two sides of the DNA double helix are connected by pairs of bases (adenine, thymine, cytosine, and guanine). Because of the geometric shape of these molecules, adenine bonds with thymine and cytosine bonds with guanine. Figure E21.21 shows the bonding of thymine and adenine. Each charge shown is ±e, and the H—N distance is 0.110 nm. (a) Calculate the net force that thymine exerts on adenine. Is it attractive or repulsive? To keep the calculations fairly simple, yet reasonable, consider only the forces due to the O—H—N and the N—H—N combinations, assuming that these two combinations are parallel to each other. Remember, however, that in the O—H—N set, the O − exerts a force on both the H + and the N − , and likewise along the N—H—N set. (b) Calculate the force on the electron in the hydrogen atom, which is 0.0529 nm from the proton. Then compare the strength of the bonding force of the electron in hydrogen with the bonding force of the adenine-thymine molecules. Figure E21.21
BIO Base Pairing in DNA, I. The two sides of the DNA double helix are connected by pairs of bases (adenine, thymine, cytosine, and guanine). Because of the geometric shape of these molecules, adenine bonds with thymine and cytosine bonds with guanine. Figure E21.21 shows the bonding of thymine and adenine. Each charge shown is ±e, and the H—N distance is 0.110 nm. (a) Calculate the net force that thymine exerts on adenine. Is it attractive or repulsive? To keep the calculations fairly simple, yet reasonable, consider only the forces due to the O—H—N and the N—H—N combinations, assuming that these two combinations are parallel to each other. Remember, however, that in the O—H—N set, the O− exerts a force on both the H+ and the N−, and likewise along the N—H—N set. (b) Calculate the force on the electron in the hydrogen atom, which is 0.0529 nm from the proton. Then compare the strength of the bonding force of the electron in hydrogen with the bonding force of the adenine-thymine molecules.
How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.
Hello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig?
Thanks!
Find the current in the R₁ resistor in the drawing
(V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ =
and R₂ = 2.705)
2.3052
VIT
A
www
R
www
R₂
R₂
Va
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.