Laboratory Manual for Introductory Circuit Analysis
Laboratory Manual for Introductory Circuit Analysis
13th Edition
ISBN: 9780133923780
Author: Robert L. Boylestad, Gabriel Kousourou
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 1P

Find the resonant ω s and fs for the series circuit with the following parameters:

a. R  = 10Ω,  L  = 1H,  C  = 16 μ F

b. R  = 300Ω,  L  = 0 .51H,  C  = 0 .16 μ F

c. R  = 20Ω,  L  = 0 .27mH,  C  = 7 .5 μ F

Expert Solution
Check Mark
To determine

(a)

The resonant frequency ωs and fs for a given series circuit.

Answer to Problem 1P

The value of resonant is ωs=250rad/sec and fs=39.79Hz.

Explanation of Solution

Given:

The series circuit has following parameters

  R=10ΩL=1HC=16μF

Formula used:ωs is calculated by

  ωs=1LC

Resonant frequency fs is calculated by

  fs=12πLC

Calculation:

With the known values, ωs is calculated as

  ωs=1 LC=1 1×(16× 10 6 )=14× 10 3=0.25×103ωs=250rad/sec

Resonant frequency fs  is calculated as

  fs=12π LC=12π 1(16× 10 6 )=.03979×103fs=39.79Hz

Conclusion:

Therefore, the value of resonant is ωs=250rad/sec and fs=39.79Hz

Expert Solution
Check Mark
To determine

(b)

The resonant frequency ωs and fs for a given series circuit.

Answer to Problem 1P

The value of resonant is ωs=3500rad/sec and fs=557Hz

Explanation of Solution

Given:

The series circuit has following parameters

  R=300ΩL=0.51HC=0.16μF

Formula used:ωs  is calculated by

  ωs=1LC

Resonant frequency fs  is calculated by

  fs=12πLC

Calculation:

With the known values, ωs  is calculated as

  ωs=1 LC=1 (0.51)(0.16× 10 6 )=3.5×103ωs=3500rad/sec

Resonant frequency fs is calculated as

  fs=12π LC=12π (0.51)(0.16× 10 6 )=.557×103fs=557Hz

Conclusion:

Therefore, the value of resonant is ωs=3500rad/sec and fs=557Hz

Expert Solution
Check Mark
To determine

(c)

The resonant frequency ωs and fs for a given series circuit.

Answer to Problem 1P

The value of resonant is ωs=22.22×103rad/sec and fs=3.536kHz

Explanation of Solution

Given:

The given circuit has parameters

  R=20ΩL=0.27mHC=7.5μF

Formula used:ωs is calculated by

  ωs=1LC

Resonant frequency fs is calculated by

  fs=12πLC

Calculation:

With the known values, ωs is calculated as

  ωs=1 LC=1 (0.27× 10 3 )(7.5× 10 6 )=22.22×103ωs=22.22×103rad/sec

Resonant frequency fs  is calculated as

  fs=12π LC=12π (0.27× 10 3 )(7.5× 10 6 )=3.536×103fs=3.536kHz

Conclusion:

Therefore, the value of resonant is ωs=22.22×103rad/sec and fs=3.536kHz.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Use the ramp generator circuit in Fig. B2a to generate the waveform shown in Fig. B2b. Write four equations relating resistors R1, R2, R3, capacitor C and voltages Vs, VR and VA.to the waveform parameters T₁, T, Vcm and Vm- If R = R2 = R3, R₁ = 2R, C = 1 nF, Vcm = 2 V and Vm = 1 V, T₁ = 2 μs and T = 10 μs solve for the values of R, Vs, VR and VA using your equations from part a(i). VR C +VA R3 V₂ Vo мат R1 VsO+ V₁ R₂ Figure B2a Vout Vcm+Vm Vcm Vcm-Vm 0 T₁ T 2T time Figure B2b
The circuit in Figure B1a is a common analogue circuit block. Explain why you would need such a circuit. Draw another circuit in which you use the current flowing in this loop to bias a common source amplifier. This circuit is not ideal for standard CMOS technologies due to threshold shift. Why? Draw an improved version of this circuit to make it better. VDD (W)P MA M3. (), REF (쁜)~ M₁ M2 lout 시~ Rs
23bc

Chapter 21 Solutions

Laboratory Manual for Introductory Circuit Analysis

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Resonance Circuits: LC Inductor-Capacitor Resonating Circuits; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=Mq-PF1vo9QA;License: Standard YouTube License, CC-BY