General Chemistry: Principles and Modern Applications (11th Edition)
General Chemistry: Principles and Modern Applications (11th Edition)
11th Edition
ISBN: 9780132931281
Author: Ralph H. Petrucci, F. Geoffrey Herring, Jeffry D. Madura, Carey Bissonnette
Publisher: PEARSON
Question
Book Icon
Chapter 21, Problem 1E
Interpretation Introduction

(a)

Interpretation:

To determine the chemical equation for the reaction of chlorine gas with cesium.

Concept introduction:

A chemical equation refers to the symbolic representation of a given chemical reaction in the form of formulae and symbols where the product entities are present on the right hand side of the chemical equation while the reactant entities are present on the left hand side of the chemical equation.

Expert Solution
Check Mark

Answer to Problem 1E

2Cs(s)+Cl2(g)2CsCl(s)

Explanation of Solution

Cesium metal is an alkali metal and it has the tendency to form a monovalent cation, namely Cs+ cation. On the other hand, chlorine gas can form chloride ion Cl-. Both these cation and anion react together to form an ionic compound namely cesium chloride.

The reaction of cesium metal with chlorine gas takes place as shown below in the following chemical equation:

2Cs(s)+Cl2(g)2CsCl(s)

Cesium chloride is formed as a product in the above reaction.

Interpretation Introduction

(b)

Interpretation:

To determine the chemical equation for the reaction in which sodium peroxide is formed.

Concept introduction:

A chemical equation refers to the symbolic representation of a given chemical reaction in the form of formulae and symbols where the product entities are present on the right hand side of the chemical equation while the reactant entities are present on the left hand side of the chemical equation.

Expert Solution
Check Mark

Answer to Problem 1E

2Na2O(s)+O2(g)2Na2O2(s)

Explanation of Solution

The formation of sodium peroxide is a type of oxidation reaction as it is accompanied by the addition of oxygen molecule to sodium atom.

The formation of sodium peroxide takes place as shown below in the following reaction:

4Na(s)+O2(g)2Na2O(s)

This reaction takes place at about 130-200oC and thereafter sodium oxide that is formed as a product absorbs oxygen in a separate stage and then sodium peroxide is formed.

2Na2O(s)+O2(g)2Na2O2(s)

Interpretation Introduction

(c)

Interpretation:

To determine the chemical equation for the reaction where thermal decomposition of lithium carbonate takes place.

Concept introduction:

A chemical equation refers to the symbolic representation of a given chemical reaction in the form of formulae and symbols where the product entities are present on the right hand side of the chemical equation while the reactant entities are present on the left hand side of the chemical equation.

Expert Solution
Check Mark

Answer to Problem 1E

Li2CO3(s)ΔLi2O(s)+CO2(g)

Explanation of Solution

Thermal decomposition reactions are those chemical reactions in which the decomposition of a chemical compound is carried out thermally or in the presence of heat. The thermal decomposition of lithium carbonate is as shown below in the following chemical reaction.

Li2CO3(s)ΔLi2O(s)+CO2(g)

Lithium oxide and carbon dioxide are formed as a product in this reaction.

Interpretation Introduction

(d)

Interpretation:

To determine the chemical equation for the reaction in which sodium sulfate is reduced to sodium sulfide.

Concept introduction:

A chemical equation refers to the symbolic representation of a given chemical reaction in the form of formulae and symbols where the product entities are present on the right hand side of the chemical equation while the reactant entities are present on the left hand side of the chemical equation.

Expert Solution
Check Mark

Answer to Problem 1E

Na2SO4(s)+4CNa2S(s)+4CO(g)

Explanation of Solution

In the reduction of sodium sulfate to sodium sulfide by carbon, sodium sulfate acts as an oxidizing agent as it itself gets reduced to sodium sulfide and oxidizes carbon to form carbon monoxide. Addition of one oxygen atom to carbon indicates that it has been oxidized. On the other hand carbon acts as a reducing agents as it causes reduction of sodium sulfate and itself gets oxidized in the reaction.

Sodium sulfate gets reduced to sodium sulfite in the presence of carbon or coke. The reaction below takes place:

Na2SO4(s)+4CNa2S(s)+4CO(g)

Carbon monoxide gas is released at the end of the reaction.

Interpretation Introduction

(e)

Interpretation:

To determine the chemical equation for the reaction in which combustion of potassium takes place to form potassium superoxide.

Concept introduction:

A chemical equation refers to the symbolic representation of a given chemical reaction in the form of formulae and symbols where the product entities are present on the righthand side of the chemical equation while the reactant entities are present on the left hand side of the chemical equation.

Expert Solution
Check Mark

Answer to Problem 1E

K(s)+O2(g)KO2(s)

Explanation of Solution

Combustion reactions are those chemical reactions in which a compound and an oxidant react together and results in the formation of a new product and heat is released at the end of the reaction.

The formation of potassium superoxide takes place by the reaction of molten potassium in which it is burnt in an atmosphere containing oxygen gas. The reaction is shown below:

K(s)+O2(g)KO2(s)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 21 Solutions

General Chemistry: Principles and Modern Applications (11th Edition)

Ch. 21 - The standard Gibbs energies of formation, rG , for...Ch. 21 - Prob. 12ECh. 21 - Prob. 13ECh. 21 - Prob. 14ECh. 21 - Prob. 15ECh. 21 - Prob. 16ECh. 21 - Prob. 17ECh. 21 - Write chemical equations for the reactions you...Ch. 21 - Without performing detailed calculations, indicate...Ch. 21 - Prob. 20ECh. 21 - With respect to decomposition to MO(s) and SO2(g)...Ch. 21 - Prob. 22ECh. 21 - Prob. 23ECh. 21 - Prob. 24ECh. 21 - Prob. 25ECh. 21 - Prob. 26ECh. 21 - Prob. 27ECh. 21 - Prob. 28ECh. 21 - Prob. 29ECh. 21 - Prob. 30ECh. 21 - Prob. 31ECh. 21 - Prob. 32ECh. 21 - Prob. 33ECh. 21 - Prob. 34ECh. 21 - Prob. 35ECh. 21 - Prob. 36ECh. 21 - Prob. 37ECh. 21 - Prob. 38ECh. 21 - Prob. 39ECh. 21 - Prob. 40ECh. 21 - Prob. 41ECh. 21 - Prob. 42ECh. 21 - Prob. 43ECh. 21 - Prob. 44ECh. 21 - Methane and sulfur vapor react to form carbon...Ch. 21 - Prob. 46ECh. 21 - Prob. 47ECh. 21 - Prob. 48ECh. 21 - Write plausible chemical equations for the (a)...Ch. 21 - Prob. 50ECh. 21 - Prob. 51ECh. 21 - Aqueous tin(II) ion, Sn2+(aq) , is a good reducing...Ch. 21 - Would you expect the reaction of Sn(s) and Cl2(g)...Ch. 21 - Prob. 54ECh. 21 - Prob. 55IAECh. 21 - The following series of observations is made: (1)...Ch. 21 - Prob. 57IAECh. 21 - Prob. 58IAECh. 21 - Prob. 59IAECh. 21 - Prob. 60IAECh. 21 - Lithium superoxide, LiO2(s) , has never been...Ch. 21 - Prob. 62IAECh. 21 - Prob. 63IAECh. 21 - Prob. 64IAECh. 21 - Use data from Appendix D (Table D-2) to calculate...Ch. 21 - Prob. 66IAECh. 21 - A particular water sample contains 56.9 ppm SO42-...Ch. 21 - An aluminum production cell of the type pictured...Ch. 21 - Prob. 69IAECh. 21 - Prob. 70IAECh. 21 - Prob. 71IAECh. 21 - Prob. 72IAECh. 21 - Prob. 73IAECh. 21 - Prob. 74IAECh. 21 - Prob. 75IAECh. 21 - Would you expect the lattice energy of MgS(s) to...Ch. 21 - Prob. 77IAECh. 21 - Prob. 78FPCh. 21 - Prob. 79FPCh. 21 - Prob. 80SAECh. 21 - Briefly describe each of the following ideas,...Ch. 21 - Explain the important distinction between each...Ch. 21 - Prob. 83SAECh. 21 - Prob. 84SAECh. 21 - Predict the products of the following reactions:...Ch. 21 - A chemist knows that aluminum is more reactive...Ch. 21 - Listed are several pairs of substances. For some...Ch. 21 - Prob. 88SAECh. 21 - Prob. 89SAECh. 21 - Prob. 90SAECh. 21 - Prob. 91SAECh. 21 - Prob. 92SAECh. 21 - Prob. 93SAECh. 21 - Prob. 94SAECh. 21 - Prob. 95SAE
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning