Concept explainers
(a)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(a)
Answer to Problem 18PS
The complete balanced equation for the reaction of potassium and iodine is:
Explanation of Solution
Potassium belongs to group
This electron is gained by iodine to form an anion with one negative charge. Iodine belongs to halogen family and it has the oxidation number of
The number of electrons in both the equations is same. Thus an ionic compound is formed in which potassium has
The stoichiometric coefficients are multiplied with species to have an equal number of atoms on both the reactant and product side, for a balanced chemical equation Since iodine is present as
Thus, the overall balanced equation is:
(b)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(b)
Answer to Problem 18PS
The complete balanced equation for the reaction of barium and oxygen is:
Explanation of Solution
Barium belongs to group
These two electrons are gained by the oxygen leading to the formation of an ionic compound. Oxygen belongs to the sulfur family and exists in -2 oxidation number.
The number of electrons in both the equations is same. Barium has a charge of
The stoichiometric coefficients are multiplied with species to have an equal number of atoms on both the reactant and product side, for a balanced chemical equation. Since oxygen is present as
Thus, the overall balanced equation is:
(c)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(c)
Answer to Problem 18PS
The complete balanced equation for the reaction of aluminium with sulfur is:
Explanation of Solution
Aluminium belongs to group
Sulphur belongs to oxygen family and exists in -2 oxidation number. These two electrons are gained by the sulphur leading to the formation of a product compound.
The numbers of electrons are not same in both the equations. Aluminium bear charge and sulfur bears
The
Thus, the overall balanced equation is:
(d)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(d)
Answer to Problem 18PS
The complete balanced equation for the reaction of silicon with chlorine is:
Explanation of Solution
Silicon belongs to group
The electronegativity difference between silicon and chlorine is less than
The stoichiometric coefficients are multiplied with species to have equal number of atoms on both the reactant and product side, for a balanced chemical equation. Since chlorine is present as
Thus, the overall balanced equation is:
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry & Chemical Reactivity
- Explain how the equation 4Fe(OH)2(s)+O2(g)→2Fe2O3(s)+4H2O(l) in the article illustrates the oxidation of the iron in the rectants.arrow_forwardIf you wanted to make something out of metal but didn't want it to rust, what are your options?arrow_forwardExplain how the equation 4Fe(OH)2(s) + O2(g)→2Fe2O3(s) + 4H2O(l) in the article illustrates the oxidation of the iron ions in the reactantsarrow_forward
- A Predict the major products of the following reaction. Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. + Cl₂ 2 X Click and drag to start drawing a structure.arrow_forwardC app.aktiv.com Predict reagents needed to complete this E2 elimination reaction. Br Problem 17 of 40 H3O+ A heat NaH B heat 0 D E (CH)COK heat CH₂ONa (CH)COH heat Donearrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- Draw the structure of the product of this reaction. H CH2CH3 Br H-... H H3C KOH E2 elimination product • Use the wedge/hash bond tools to indicate stereochemistry where it exists. • If there are alternative structures, draw the most stable one. • If no reaction occurs, draw the organic starting material. O + 98 // n ?arrow_forward4. a) Give a suitable rationale for the following cyclization, stating the type of process involved (e.g. 9-endo-dig), clearly showing the mechanistic details at each step. H CO₂Me 1) NaOMe 2) H3O® CO₂Mearrow_forward2. Platinum and other group 10 metals often act as solid phase hydrogenation catalysts for unsaturated hydrocarbons such as propylene, CH3CHCH2. In order for the reaction to be catalyzed the propylene molecules must first adsorb onto the surface. In order to completely cover the surface of a piece of platinum that has an area of 1.50 cm² with propylene, a total of 3.45 x 10¹7 molecules are needed. Determine the mass of the propylene molecules that have been absorbed onto the platinum surface.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax