COLLEGE PHY2053 W/MODIFIED ACCESS>BI<
16th Edition
ISBN: 9781323515303
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 16P
A 2.0 cm × 2.0 cm parallel-plate capacitor has a 2.0 mm spacing. The electric field strength inside the capacitor is 1.0 × 105 V/m.
A. What is the potential difference across the capacitor?
B. How much charge is on each plate?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule05:20
Students have asked these similar questions
A 2.0 cm x 2.0 cm parallel-plate capacitor has a 2.0 mm spacing.The electric field strength inside the capacitor is 1.0 x 105 V/m.a. What is the potential difference across the capacitor?b. How much charge is on each plate?
Two 3.00 cm × 3.00 cm plates that form a parallel-plate capacitor are charged to ± 0.708 nC .
Part A. What is the electric field strength inside the capacitor if the spacing between the plates is 1.10 mm ?Express your answer with the appropriate units.
Part B. What is potential difference across the capacitor if the spacing between the plates is 1.10 mm ?Express your answer with the appropriate units.
Part C. What is the electric field strength inside the capacitor if the spacing between the plates is 2.20 mm ?Express your answer with the appropriate units.
Part D. What is the potential difference across the capacitor if the spacing between the plates is 2.20 mm ?Express your answer with the appropriate units.
Chapter 21 Solutions
COLLEGE PHY2053 W/MODIFIED ACCESS>BI<
Ch. 21 - By moving a 10 nC charge from point A to point B,...Ch. 21 - Charge q is fired through a small hole in the...Ch. 21 - Prob. 3CQCh. 21 - Prob. 4CQCh. 21 - An electron moves along the trajectory from i to f...Ch. 21 - As shown in Figure Q21.7, two protons are launched...Ch. 21 - Prob. 7CQCh. 21 - Figure Q21.9 shows two points inside a capacitor....Ch. 21 - A capacitor with plates separated by distanced is...Ch. 21 - Prob. 10CQ
Ch. 21 - Prob. 11CQCh. 21 - Prob. 12CQCh. 21 - Prob. 13CQCh. 21 - Prob. 14CQCh. 21 - Prob. 15CQCh. 21 - Prob. 17CQCh. 21 - Prob. 18MCQCh. 21 - A 1.0 nC positive point charge is located at point...Ch. 21 - Prob. 20MCQCh. 21 - Prob. 21MCQCh. 21 - Prob. 22MCQCh. 21 - Prob. 23MCQCh. 21 - Prob. 24MCQCh. 21 - Prob. 25MCQCh. 21 - Prob. 26MCQCh. 21 - A bug zapper consists of two metal plates...Ch. 21 - An atom of helium and one of argon are singly...Ch. 21 - Prob. 29MCQCh. 21 - Prob. 30MCQCh. 21 - Prob. 31MCQCh. 21 - Prob. 32MCQCh. 21 - Moving a charge from point A, where the potential...Ch. 21 - The graph in Figure P21.2 shows the electric...Ch. 21 - It takes 3.0 J of work to move a 15 nC charge from...Ch. 21 - Prob. 4PCh. 21 - A 20 nC charge is moved from a point where V = 150...Ch. 21 - Prob. 6PCh. 21 - At one point in space, the electric potential...Ch. 21 - Prob. 8PCh. 21 - What potential difference is needed to accelerate...Ch. 21 - Prob. 10PCh. 21 - An electron with an initial speed of 500,000 m/s...Ch. 21 - Prob. 12PCh. 21 - A proton with an initial speed of 800,000 m/s is...Ch. 21 - The electric potential at a point that is halfway...Ch. 21 - A 2.0 cm 2.0 cm parallel-plate capacitor has a...Ch. 21 - Two 2.00 cm 2.00 cm plates that form a...Ch. 21 - Prob. 18PCh. 21 - Prob. 19PCh. 21 - Prob. 20PCh. 21 - Prob. 21PCh. 21 - Prob. 22PCh. 21 - a. What is the potential difference between the...Ch. 21 - Prob. 24PCh. 21 - Prob. 25PCh. 21 - Prob. 26PCh. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - Prob. 29PCh. 21 - Prob. 30PCh. 21 - What are the magnitude and direction of the...Ch. 21 - Prob. 32PCh. 21 - Prob. 33PCh. 21 - Prob. 34PCh. 21 - Prob. 35PCh. 21 - Prob. 36PCh. 21 - Two 2.0 cm 2.0 cm square aluminum electrodes,...Ch. 21 - Prob. 38PCh. 21 - An uncharged capacitor is connected to the...Ch. 21 - Prob. 40PCh. 21 - You need to construct a 100 pF capacitor for a...Ch. 21 - Prob. 42PCh. 21 - A switch that connects a battery to a 10 F...Ch. 21 - Prob. 44PCh. 21 - Initially, the switch in Figure P21 .33 is open...Ch. 21 - A 1.2 nF parallel-plate capacitor has an air gap...Ch. 21 - A 25 pF parallel-plate capacitor with an air gap...Ch. 21 - Prob. 48PCh. 21 - A science-fair radio uses a homemade capacitor...Ch. 21 - A parallel-plate capacitor is connected to a...Ch. 21 - A parallel-plate capacitor is charged by a 12.0 V...Ch. 21 - Prob. 52PCh. 21 - To what potential should you charge a 1.0 F...Ch. 21 - Prob. 54PCh. 21 - Capacitor 2 has half the capacitance and twice the...Ch. 21 - Prob. 56PCh. 21 - 50 pJ of energy is stored in a 2.0 cm 2.0 cm 2.0...Ch. 21 - Two uncharged metal spheres, spaced 15.0 cm apart,...Ch. 21 - A 2.0-cm-diameter parallel-plate capacitor with a...Ch. 21 - Prob. 60GPCh. 21 - A 50 nC charged particle is in a uniform electric...Ch. 21 - The 4000 V equipotential surface is 10.0 cm...Ch. 21 - Prob. 63GPCh. 21 - Two point charges 2.0 cm apart have an electric...Ch. 21 - A +3.0 nC charge is at x = 0 cm and a 1.0 nC...Ch. 21 - A 3.0 nC charge is on the x-axis at x = 9 cm and a...Ch. 21 - Prob. 67GPCh. 21 - Electric outlets have a voltage of approximately...Ch. 21 - A Na+ion moves from inside a cell, where the...Ch. 21 - Suppose that a molecular ion with charge 10e is...Ch. 21 - Prob. 71GPCh. 21 - a. What is the electric potential at point A in...Ch. 21 - Prob. 73GPCh. 21 - A proton follows the path shown in Figure P21.63....Ch. 21 - A parallel-plate capacitor is charged to 5000 V. A...Ch. 21 - A proton is released from rest at the positive...Ch. 21 - In the early 1900s, Robert Millikan used small...Ch. 21 - Two 2.0-cm-diameter disks spaced 2.0 mm apart form...Ch. 21 - In proton-beam therapy, a high-energy beam of...Ch. 21 - A 2.5-mm-diameter sphere is charged to 4.5 nC. An...Ch. 21 - A proton is fired from far away toward the nucleus...Ch. 21 - Prob. 82GPCh. 21 - Prob. 83GPCh. 21 - A capacitor consists of two 6.0-cm-diameter...Ch. 21 - The dielectric in a capacitor serves two purposes....Ch. 21 - The highest magnetic fields in the world are...Ch. 21 - The flash unit in a camera uses a special circuit...Ch. 21 - A Lightning Strike Storm clouds build up large...Ch. 21 - Prob. 89MSPPCh. 21 - A Lightning Strike Storm clouds build up large...Ch. 21 - A Lightning Strike Storm clouds build up large...Ch. 21 - A Lightning Strike Storm clouds build up large...
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
7. Block B in FIGURE EX7.7 rests on a surface for which the static and kinetic coefficients of friction are 0.6...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Choose the best answer to etch of the following . Explain your reasoning. 2.Careful study of of community among...
Cosmic Perspective Fundamentals
15. The accompanying pedigree shows the transmission of albinism (absence of skin pigment) in a human family.
...
Genetic Analysis: An Integrated Approach (3rd Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A spherical capacitor is formed from two concentric spherical conducting spheres separated by vacuum. Tire inner sphere has radius 12.5 cm and the outer sphere has radius 14.8 cm. A potential difference of 120 V is applied to the capacitor, (a) What is the capacitance of the capacitor? tb) What is the magnitude of the electrical field at r = 12.6 cm, just outside the inner sphere? (c) What is the magnitude of the electrical field at r = 14.7 cm, just inside the outer sphere? (d) For a parallel-plate capacitor the electrical field is uniform in the region between the plates, except near the edges of the plates. Is this also true for a spherical capacitor?arrow_forwardA parallel-plate capacitor has charge of magnitude 9.00F on each plate and capacitance 3.00F when there is air between the plates. The plates are separated by 2.00 mm. With the charge on the plates kept constant, a dielectric with =5 . is inserted between the plates, completely filling the volume between the plates, (a) What is the potential difference between the plates of the capacitor, before and after the dielectric has been inserted? (b) What is the electrical field at the point midway between the plates before and after the dielectric is inserted?arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forward
- A 5.00-nC charged particle is at point B in a uniform electric field with a magnitude of 625 N/C (Fig. P26.65). What is the change in electric potential experienced by the charge if it is moved from B to A along a. path 1 and b. path 2?arrow_forward(a) What is the capacitance of a parallel plate capacitor having plates of area 1.50 m2 that are separated by 0.0200 mm of neoprene rubber? (b) What charge does it hold when 9.00 V is applied to it?arrow_forwardWhen a 360-nF air capacitor is connected to a power supply, the energy stored in the capacitor is 18.5J . While the capacitor is connected to the power supply, a slab of dielectric is insetted that completely fills die space between the plates. This increases the stored energy by 23.2J . (a) What is the potential difference between the capacitor plates? (b) What is die dielectric constant of the slab?arrow_forward
- (a) Calculate the electric potential 0.250 cm from ail electron, (b) What is the electric potential difference between two points that are 0.250 cm and 0.750 cm from an electron? (c) How would the answers change if the electron were replaced with a proton?arrow_forward(a) A sphere has a surface uniformly charged with 1.00 C. At what distance from its center is the potential 5.00 MV? (b) What does your answer imply about the practical aspect of isolating such a large charge?arrow_forward(a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graff terminal? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forward
- A line of charge with uniform charge density lies along the x axis from x = a to x = a. a. What is the magnitude of the electric potential at (0, y)? b. How much work is necessary to move a particle with charge q from very far away to (0, y)?arrow_forward(a) What is the capacitance of a parallel-plate capacitor with plates of area 1.50 m that are separated by 0.0200 mm of neoprene rubber? (b) What charge does it hold when 9.00 V is applied to it?arrow_forwardFIGURE P26.14 Problems 14, 15, and 16. Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY