Concept explainers
In 1927, the ophthalmologist George Waaler tested 9049 schoolboys in Oslo, Norway, for red-green color blindness and found 8324 of them to be normal and 725 to be color blind. He also tested 9072 schoolgirls and found 9032 that had normal color vision while 40 were color blind.
a. | Assuming that the same sex-linked recessive allele c causes all forms of red-green color blindness, calculate the allele frequencies of c and C (the allele for normal vision) from the data for the schoolboys. (Hint: Refer to your answer to Problem 12a.) |
b. | Does Waaler’s sample demonstrate Hardy-Weinberg equilibrium for alleles of this gene? Explain your answer by describing observations that are either consistent or inconsistent with this hypothesis. On closer analysis of these schoolchildren, Waaler found that there was actually more than one c allele causing color blindness in his sample: one kind for the prot type (cp ) and one for the deuter type (cd ). (Protanopia and deuteranopia are slightly different forms of red-green color blindness.) Importantly, some of the apparently normal females in Waaler’s studies were probably of genotype cp /cd . Through further analysis of the 40 color-blind females, he found that 3 were prot (cp /cp ), and 37 were deuter (cd /cd ). |
c. | Based on this new information, what are the frequencies of the cp, cd, and C alleles in the population examined by Waaler? Calculate these values as if the frequencies obey the Hardy-Weinberg equilibrium. (Note: Again, refer to your answer to Problem 12a.) |
d. | Calculate the frequencies of all genotypes expected among men and women if the population is at equilibrium. |
e. | Do these results make it more likely or less likely that the population in Oslo is indeed at equilibrium for red-green color blindness? Explain your reasoning. |
a.
To determine:
The allele frequencies of c and C.
Introduction:
George Waaler conducted a survey on color blindness. This survey was conducted in the year 1927. Around 9049 school boys and 9072 school girls were tested during this survey. The aim of this survey was to detect the average number of boys and girls that suffered from color blindness.
Explanation of Solution
Color blindness is a recessive trait. It is an X-linked disorder. This reflects that males are hemizygous for this trait. As a result, boys are the common sufferers of color-blindness.
The given information is as follows;
C is the allele for normal vision while c is the allele for color-blindness.
The formula to be used is as follows:
Substituting the given information in the above formula:
The allele frequencies of c and C are 0.92 and 0.08.
b.
To determine:
Whether Waaler’s sample demonstrated Hardy-Weinberg equilibrium for alleles.
Introduction:
Geoffrey H. Hardy was a scientist who proposed the concept of Hardy-Weinberg equilibrium. This concept is used to associate the allele frequency with the genotype frequency. The populations that have allele frequency and the genotypic frequency at equilibrium follow the concept of Hardy-Weinberg equilibrium.
Explanation of Solution
In case the population is at Hardy-Weinberg equilibrium, then the allele frequency of girls should be equal to the allele frequency of boys.
The given information is as follows:
Thus,
In case, the allele frequency of girls is at Hardy-Weinberg equilibrium, then
However, the allele frequency of c in boys is 0.08. This reflects that Waaler’s sample does not demonstrate Hardy-Weinberg equilibrium for alleles.
c.
To determine:
The frequencies of the cP, cd, and C alleles when the values of frequencies obey Hardy-Weinberg equilibrium:
Introduction:
Waaler discovered that there are two types of c alleles that are responsible for color blindness. These are prot type c allele (cp) and deuter type c allele (cd). The prot allele codes for protanopia color blindness while deuter allele codes for deuteranopia color blindness.
Explanation of Solution
The given information is as follows:
The people suffering from protanopia have cpcp while people deuteranopia has cdcd .
The formula to be used is as follows:
According to Hardy-Weinberg equilibrium:
Where:
p is the allele frequency of C
q is the allele frequency of c
The allele frequency of c (q) has been calculated as 0.082.
The frequency of C can be calculated by using the above formula:
Thus, frequencies of the cP, cd, and C alleles are 0.018, 0.064 and 0.918 respectively.
d.
To determine:
The frequencies of all genotypes if the population is at equilibrium.
Introduction
The set of the alleles in DNA that carries the information for the expression of a trait in an individual is known as its genotype. For example, genotype ‘TT’ expresses the tallness in plants.
Explanation of Solution
In case the population is at equilibrium, then the allele frequency and genotype frequencies of boys must be equal to the allele and genotype frequencies of girls.
Thus, frequencies of the cP, cd, and C alleles in boys are as follows:
The genotype frequencies in girls are as follows:
e.
To determine:
Whether the population in Oslo is more likely or less likely at equilibrium for color blindness.
Introduction:
The survey that was conducted by George Waaler was done on the school boys and school girls of Oslo. This survey helped in understanding the importance of Hardy-Weinberg equilibrium in studying red-green color blindness.
Explanation of Solution
The allele frequency of C is same in both boys and girls. The allele frequency of c in boys is also same as the allele frequency of c in girls. The frequencies of genotypes with normal and color blind vision are same in both boys and girls. This reflects that the population in Oslo is more likely at equilibrium for color blindness.
Want to see more full solutions like this?
Chapter 21 Solutions
EBK GENETICS: FROM GENES TO GENOMES
- examples of synamtomorphy.arrow_forwardE. Bar Graph Use the same technique to upload the completed image. We will use a different type of graph to derive additional information from the CO2 data (Fig A1.6.2) 1. Calculate the average rate of increase in COz concentration per year for the time intervals 1959-1969, 1969- 1979, etc. and write the results in the spaces provided. The value for 1959-1969 is provided for you as an example. 2. Plot the results as a bar graph. The 1959-1969 is plotted for you. 3. Choose the graph that looks the most like yours A) E BAR GRAPH We will use a different type of graph to derive additional information from the CU, data (rig. nive). Average Yearly Rate of Observatory, Hawall interval Rate of increase per year 1959-1969 0.9 1969-1979 1979-1989 1989-1999 1999-2009 Figure A1.6.2 1999-2009 *- mrame -11- -n4 P2 جية 1989-1999 1979-1989 1969-1979 1959-1969 This bar drawn for you as an example 1.0 CO, Average Increase/Year (ppmv) B) E BAR GRAPH We will use a different type of graph to derive…arrow_forwardUse the relationships you just described to compute the values needed to fill in the blanks in the table in Fig A1.4.1 depth (a) 1.0 cml 0.7 cml cm| base dimensions (b, c)| 1.0 cm| 1.0 cm| 1.0 cm 1.0 cm| 1.0 cm| 1.0 cm volume (V) 1.0_cm' cm'| cm'| density (p) 1.0 g/cm'| 1.0 g/cm 1.0 g/cm' mass (m)| 0.3 g Column 1: depth at 1.0 cm volume mass Column 2: depth at 0.7 cm volume mass Column 3: unknown depth depth volumearrow_forward
- San Andreas Transform Boundary Plate Motion The geologic map below of southern California shows the position of the famous San Andreas Fault, a transform plate boundary between the North American Plate (east side) and the Pacific Plate (west side). The relative motion between the plates is indicated by the half arrows along the transform plate boundary (i.e., the Pacific Plate is moving to the northwest relative to the North American Plate). Note the two bodies of Oligocene volcanic rocks (labeled Ov) on the map in the previous page located along either side of the San Andreas Fault. These rocks are about 23.5 million years old and were once one body of rock. They have been separated by displacement along the fault. 21. Based on the offset of these volcanic rocks, what is the average annual rate of relative plate motion in cm/yr? SAF lab 2.jpg Group of answer choices 0.67 cm/yr 2 cm/yr 6.7 cm/yr 1.5 cm/yr CALIFORNIA Berkeley San Francisco K Os Q San Andreas Fault Ov…arrow_forwardThese are NOT part of any graded assignment. Are there other examples of synapomorphy. What is it called when the traits retained are similar to ancestors?arrow_forwardPlease hand draw everying. Thank you! Draw a gram positive bacterial cell below. Your cell should have the following parts, labeled: A coccus shape A capsule The gram positive cell wall should have the peptidoglycan labeled, as well as its component parts (NAM, NAG, and teichoic acid) A cell membrane Fimbriae A nucleoid Ribosomes Inclusionsarrow_forward
- Draw a gram negative bacterial cell below. Your cell should have the following parts, labeled: A bacillus shape Fimbriae Amphitrichous flagella 2 membranes (outer and inner) The outer membrane should have lipopolysaccharide (LPS) with lipid A and O antigens Periplasmic space The thin peptidoglycan cell wall between the 2 membranes A nucleoid Ribosomes Inclusionsarrow_forwardBacterial species Cell wall type Example: S. mitis Gram positive S. epidermidis H. pylori M. bovis S. marcescens Shape and arrangement Coccus, streptococcus Drawing 0000000arrow_forwardDraw a gram positive bacterial cell below. Your cell should have the following parts, labeled: A coccus shape A capsule The gram positive cell wall should have the peptidoglycan labeled, as well as its component parts (NAM, NAG, and teichoic acid) A cell membrane Fimbriae A nucleoid Ribosomes Inclusionsarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax