
Concept explainers
In 1927, the ophthalmologist George Waaler tested 9049 schoolboys in Oslo, Norway, for red-green color blindness and found 8324 of them to be normal and 725 to be color blind. He also tested 9072 schoolgirls and found 9032 that had normal color vision while 40 were color blind.
a. | Assuming that the same sex-linked recessive allele c causes all forms of red-green color blindness, calculate the allele frequencies of c and C (the allele for normal vision) from the data for the schoolboys. (Hint: Refer to your answer to Problem 12a.) |
b. | Does Waaler’s sample demonstrate Hardy-Weinberg equilibrium for alleles of this gene? Explain your answer by describing observations that are either consistent or inconsistent with this hypothesis. On closer analysis of these schoolchildren, Waaler found that there was actually more than one c allele causing color blindness in his sample: one kind for the prot type (cp ) and one for the deuter type (cd ). (Protanopia and deuteranopia are slightly different forms of red-green color blindness.) Importantly, some of the apparently normal females in Waaler’s studies were probably of genotype cp /cd . Through further analysis of the 40 color-blind females, he found that 3 were prot (cp /cp ), and 37 were deuter (cd /cd ). |
c. | Based on this new information, what are the frequencies of the cp, cd, and C alleles in the population examined by Waaler? Calculate these values as if the frequencies obey the Hardy-Weinberg equilibrium. (Note: Again, refer to your answer to Problem 12a.) |
d. | Calculate the frequencies of all genotypes expected among men and women if the population is at equilibrium. |
e. | Do these results make it more likely or less likely that the population in Oslo is indeed at equilibrium for red-green color blindness? Explain your reasoning. |

a.
To determine:
The allele frequencies of c and C.
Introduction:
George Waaler conducted a survey on color blindness. This survey was conducted in the year 1927. Around 9049 school boys and 9072 school girls were tested during this survey. The aim of this survey was to detect the average number of boys and girls that suffered from color blindness.
Explanation of Solution
Color blindness is a recessive trait. It is an X-linked disorder. This reflects that males are hemizygous for this trait. As a result, boys are the common sufferers of color-blindness.
The given information is as follows;
C is the allele for normal vision while c is the allele for color-blindness.
The formula to be used is as follows:
Substituting the given information in the above formula:
The allele frequencies of c and C are 0.92 and 0.08.

b.
To determine:
Whether Waaler’s sample demonstrated Hardy-Weinberg equilibrium for alleles.
Introduction:
Geoffrey H. Hardy was a scientist who proposed the concept of Hardy-Weinberg equilibrium. This concept is used to associate the allele frequency with the genotype frequency. The populations that have allele frequency and the genotypic frequency at equilibrium follow the concept of Hardy-Weinberg equilibrium.
Explanation of Solution
In case the population is at Hardy-Weinberg equilibrium, then the allele frequency of girls should be equal to the allele frequency of boys.
The given information is as follows:
Thus,
In case, the allele frequency of girls is at Hardy-Weinberg equilibrium, then
However, the allele frequency of c in boys is 0.08. This reflects that Waaler’s sample does not demonstrate Hardy-Weinberg equilibrium for alleles.

c.
To determine:
The frequencies of the cP, cd, and C alleles when the values of frequencies obey Hardy-Weinberg equilibrium:
Introduction:
Waaler discovered that there are two types of c alleles that are responsible for color blindness. These are prot type c allele (cp) and deuter type c allele (cd). The prot allele codes for protanopia color blindness while deuter allele codes for deuteranopia color blindness.
Explanation of Solution
The given information is as follows:
The people suffering from protanopia have cpcp while people deuteranopia has cdcd .
The formula to be used is as follows:
According to Hardy-Weinberg equilibrium:
Where:
p is the allele frequency of C
q is the allele frequency of c
The allele frequency of c (q) has been calculated as 0.082.
The frequency of C can be calculated by using the above formula:
Thus, frequencies of the cP, cd, and C alleles are 0.018, 0.064 and 0.918 respectively.

d.
To determine:
The frequencies of all genotypes if the population is at equilibrium.
Introduction
The set of the alleles in DNA that carries the information for the expression of a trait in an individual is known as its genotype. For example, genotype ‘TT’ expresses the tallness in plants.
Explanation of Solution
In case the population is at equilibrium, then the allele frequency and genotype frequencies of boys must be equal to the allele and genotype frequencies of girls.
Thus, frequencies of the cP, cd, and C alleles in boys are as follows:
The genotype frequencies in girls are as follows:

e.
To determine:
Whether the population in Oslo is more likely or less likely at equilibrium for color blindness.
Introduction:
The survey that was conducted by George Waaler was done on the school boys and school girls of Oslo. This survey helped in understanding the importance of Hardy-Weinberg equilibrium in studying red-green color blindness.
Explanation of Solution
The allele frequency of C is same in both boys and girls. The allele frequency of c in boys is also same as the allele frequency of c in girls. The frequencies of genotypes with normal and color blind vision are same in both boys and girls. This reflects that the population in Oslo is more likely at equilibrium for color blindness.
Want to see more full solutions like this?
Chapter 21 Solutions
EBK GENETICS: FROM GENES TO GENOMES
- Molecular Biology Please help with question. Thank you in advance. Discuss, compare and contrast the structure of promoters inprokaryotes and eukaryotes.arrow_forwardMolecular Biology Please help with question. Thank you You are studying the expression of the lac operon. You have isolated mutants as described below. In the absence of glucose, explain/describe what would happen, for each mutant, to the expression of the lac operon when you add lactose AND what would happen when the bacteria has used up all of the lactose (if the mutant is able to use lactose).1. Mutations in the lac repressor gene that would prevent the binding of lactose2. Mutations in the lac repressor gene that would prevent release of lactose once lactose hadbound3. Normally the lac repressor gene is located next to (a few hundred base pairs) and upstreamfrom the lac operon. Mutations in the lac repressor gene that move the lac repressor gene 100,000base pairs downstream.4. Mutations in the lac operator that would prevent binding of lac repressorarrow_forwardYou have returned to college to become a phylogeneticist. One of the first things you wish to do is determine how mammals, birds, and reptiles are related. Like any good scientist, you need to consider all available data objectively and without a preconceived “correct” answer. In pursuit of that, you should produce a phylogenetic tree based only on morphological features that show birds and mammals are more closely related. You will then produce a totally different tree, also using morphological features, that shows birds and reptiles are more closely related. Do not forget to include all three groups in both your trees. Based solely off the trees you produce, which relationship would you consider the more likely and why? Once you have answered that question, provide a brief summary of the “modern” understanding of the relationship between these three groups.arrow_forward
- true or false, the reason geckos can walk on walls is hydrogen bonding between their foot pads and the moisture on the wall.arrow_forwardBiology laboratory problem Please help. thank you You have 20 ul of DNA solution and 6X DNA loading buffer solution. You have to mix your DNA solution and DNA loading buffer before load DNA in an agarose gel. The concentration of the DNA loading buffer must be 1X in the DNA and DNA-loading buffer mixture after you mix them. For that, I will add _____ ul of 6X loading buffer to the 20 ul DNA solution.arrow_forwardBiology lab problem To make 20 ul of 5 mM MgCl2 solution using 50 mM MgCl2 stock solution and distilled water, I will mix ________ ul of 50 mM MgCl2 solution and ________ ul of distilled water. Please help . Thank youarrow_forward
- Biology Please help. Thank you. Biology laboratory question You need 50 ml of 1% (w/v) agarose gel. Agarose is a powder. How would you make it? You can ignore the volume of agarose powder. Don't forget the unit.TBE buffer is used to make an agarose gel, not distilled water. I will add _______ of agarose powder into 50 ml of distilled water (final 50 ml).arrow_forwardAn urgent care center experienced the average patient admissions shown in the Table below during the weeks from the first week of December through the second week of April. Week Average Daily Admissions 1-Dec 11 2-Dec 14 3-Dec 17 4-Dec 15 1-Jan 12 2-Jan 11 3-Jan 9 4-Jan 9 1-Feb 12 2-Feb 8 3-Feb 13 4-Feb 11 1-Mar 15 2-Mar 17 3-Mar 14 4-Mar 19 5-Mar 13 1-Apr 17 2-Apr 13 Forecast admissions for the periods from the first week of December through the second week of April. Compare the forecast admissions to the actual admissions; What do you conclude?arrow_forwardAnalyze the effectiveness of the a drug treatment program based on the needs of 18-65 year olds who are in need of treatment by critically describing 4 things in the program is doing effectively and 4 things the program needs some improvement.arrow_forward
- I have the first half finished... just need the bottom half.arrow_forward13. Practice Calculations: 3 colonies were suspended in the following dilution series and then a viable plate count and microscope count was performed. Calculate IDF's, TDF's and then calculate the CFU/mL in each tube by both methods. Finally calculate the cells in 1 colony by both methods. Show all of your calculations in the space provided on the following pages. 3 colonies 56 cells 10 μL 10 μL 100 μL 500 με m OS A B D 5.0 mL 990 με 990 με 900 με 500 μL EN 2 100 με 100 μL 118 colonies 12 coloniesarrow_forwardDescribe and give a specific example of how successionary stage is related to species diversity?arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax




