Concept explainers
Two hypothetical lizard populations found on opposite sides of a mountain in the Arizonan desert have two alleles (AF, AS ) of a single gene A with the following three genotype frequencies:
a. | What is the allele frequency of AF in the two populations? |
b. | Do either of the two populations appear to be at Hardy-Weinberg equilibrium? |
c. | A huge flood opened a canyon in the mountain range separating populations 1 and 2. They were then able to migrate such that the two populations, which were of equal size, mixed completely and mated at random. What are the frequencies of the three genotypes (AF AF, AF AS, and AS AS ) in the next generation of the single new population of lizards? |
a.
To determine:
The allele frequency of AF in the two populations.
Introduction:
The branch of genetics that studies the transmission of genetic material in a population is termed as population genetics. The proportion of gene copies that are of a common allele type in a population is termed as allele frequency. The allele frequency is important for understanding population genetics.
Explanation of Solution
The given information is as follows:
For population I:
Genotype frequency of AFAF = 38
Genotype frequency of AFAS = 44
Genotype frequency of ASAS = 18
Each genotype is composed of two alleles.
The formula to be used is as follows:
For population II:
Genotype frequency of AFAF = 0
Genotype frequency of AFAS = 80
Genotype frequency of ASAS = 20
Each genotype is composed of two alleles.
Thus, the allele frequency of AF in population I is 0.6 and allele frequency of AF in population II is 0.4.
b.
To determine:
Whether both the population appears to be at Hardy-Weinberg equilibrium.
Introduction:
Geoffrey H. Hardy was a scientist who proposed the concept of Hardy-Weinberg equilibrium. This concept is used to associate the allele frequency with the genotype frequency. The populations that have allele frequency and the genotypic frequency at equilibrium follow the concept of Hardy-Weinberg equilibrium.
Explanation of Solution
According to Hardy-Weinberg equilibrium:
Where:
p is the allele frequency of AF
q is the allele frequency of AS
For population I:
The allele frequency of AF (p) = 0.6
The allele frequency of AS (q) = 0.4
The formula to be used is as follows:
Substituting the value of p = 0.6 and q = 0.4 in the above formula gives the following result:
This indicates that the population I appear to be at Hardy-Weinberg equilibrium.
For population II:
The allele frequency of AF (p) = 0.4
The allele frequency of AS (q) = 0.6
The formula to be used is as follows:
Substituting the value of p = 0.4 and q = 0.6 in the above formula gives the following result:
This reflects that population II appears to be at Hardy-Weinberg equilibrium.
Thus, both population I and population II are at Hardy-Weinberg equilibrium.
c.
To determine:
The frequency of genotypes (AF AF, AF AS, and AS AS ) in the next generation.
Introduction:
The set of the alleles in DNA that carries the information for the expression of a trait in an individual is known as its genotype. For example, genotype ‘TT’ expresses the tallness in plants. The genotypes are responsible for controlling the expression of traits.
Explanation of Solution
The following table represents the population number of a single population after a natural calamity:
Population | AF AF | AF AS | AS AS | Total |
Population I | 38 | 44 | 18 | |
Population II | 0 | 80 | 20 | |
Single population |
Each genotype is composed of two alleles.
The formula to be used is as follows:
The allele frequency of AF is represented as “p”.
The allele frequency of AS is represented as “q”.
The frequencies of three genotypes among zygotes due to random mating are as follows:
Thus, the genotype frequency of AF AF in the next generation is 0.25, AF AS is 0.5, and AS AS is also 0.5.
Want to see more full solutions like this?
Chapter 21 Solutions
EBK GENETICS: FROM GENES TO GENOMES
- If you wanted to reduce the difference between peak and trough levels that occur with repeated administration of a drug, how would you adjust the dose and dose interval without changing the plateau concentration (plateau is the average of peak and trough levels)? Select your answers for both dose and interval. Hint: It may be helpful to think about this problem using an example such as food. How would you eat if you wanted to maintain very steady hunger/satiety levels without changing your total caloric intake? Options: A. Dose; Increase dose B. Dose; Decrease dose C. Dose; Do not change dose D. Interval; Increase the interval between doses (give the drug less frequently) E. Interval; Decrease the interval between doses (give the drug more frequently) F. Interval; Do not change the intervalarrow_forwardWhat percentage of a drug is eliminated after 4 half-lives? Please round to the nearest percent. Show the matharrow_forwardBriefly explain the 6 domain of interprofessional collaboration: Role clarification, Team functioning, Interprofessional communication, Patient/client/family/community-centered care, Interprofessional conflict resolution, Collaborative leadership. Provide a specific negative events that nursing student would observe in a clinical setting for each domain.arrow_forward
- what is an intermittent water course and what kind of fish habitat it would providearrow_forwardwhy are native freshwater mussels are an important part of great lakes ecosystemarrow_forwardwhat morphological features differentiate the lamprey species and other species in the great lakesarrow_forward
- There are a wide range of therapeutic applications available as options for patients. Medical professionals should be aware of these applications so they can make informed recommendations to patients. To gain a better understanding of some therapeutic applications and how they are related to RNA and mRNA, research long non-coding RNA. Respond to the following in a minimum of 175 words: What is lncRNA and what does it do? How does IncRNA differ from mRNA? What are some therapeutic applications associated with lncRNA? Think about possible future uses of this application. What are the advantages and disadvantages of this application and its continued use?arrow_forwardfour fish or mussel species that are native to the great lakesarrow_forwardThere are a wide range of therapeutic applications available as options for patients. Medical professionals should be aware of these applications so they can make informed recommendations to patients. To gain a better understanding of some therapeutic applications and how they are related to RNA and mRNA, research long non-coding RNA. Respond to the following in a minimum of 175 words: What is lncRNA and what does it do? How does IncRNA differ from mRNA? What are some therapeutic applications associated with lncRNA? Think about possible future uses of this application. What are the advantages and disadvantages of this application and its continued use?arrow_forward
- four physial characteristics of a fish or a mussel that would help you identify it to a speciesarrow_forwarddescribe what you would do in this situation, you are working ona. river and it will take 20 minutes by boat to get back to the field truck, you are 1 hour from finishing the field work on the last day of field trip. you hear thunder int he dsitnace, what did you do?arrow_forwardunu grow because auxin is still produced in the tip to Another of Boysen and Jensen's experiments included the use of mica, explain why one of the shoots was able to show phototropism and the other was not. Mica Wafer Ligh c. They then t but this time permeable n shoot. Why phototropis Light Mica Wafer Coleoptile tips Tips removed: agar Explain why the shoo direction after the ag the cut shoot, even tarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Case Studies In Health Information ManagementBiologyISBN:9781337676908Author:SCHNERINGPublisher:CengageConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning