
Concept explainers
(a)
The expression for the electric potential.
(a)

Answer to Problem 82P
The expression for the electric potential is
Explanation of Solution
The diagram for the system is given by figure 1.
Write the expression total potential.
Here,
Write the equation for potential difference at first point.
Here,
Write the equation for potential difference at second point.
Here,
For
Here.
The distance between the points are almost same,
Write the expression for dipole.
Conclusion:
Substitute,
Thus, the expression for the electric potential is
(b)
The radial and perpendicular component of electric field.
(b)

Answer to Problem 82P
The radial and perpendicular component of electric field is
Explanation of Solution
Write the expression for the radial component of electric field.
Here,
Write the equation for perpendicular component of electric field.
Here,
Conclusion:
Substitute,
Substitute,
Thus, the radial and perpendicular component of electric field is
(c)
The electric field at
(c)

Answer to Problem 82P
The electric field at
Explanation of Solution
Write the expression for the radial component of electric field.
Write the expression for the perpendicular component of electric field.
Conclusion:
For
Substitute,
For
Substitute,
The results are reasonable since the component of electric field is having finite value.
Thus, the electric field at
(d)
The electric field at
(d)

Answer to Problem 82P
The electric field at
Explanation of Solution
Write the expression for the radial component of electric field.
Write the expression for the perpendicular component of electric field.
Conclusion:
Substitute,
The electric field at the centre of dipole is not infinite.
The results are not reasonable since the component of electric field is having infinite value.
Thus, The electric field at
(e)
The potential in Cartesian coordinate.
(e)

Answer to Problem 82P
The potential in Cartesian coordinate is
Explanation of Solution
Write the expression for the potential.
Conclusion:
Substitute,
Thus, the potential in Cartesian coordinate is
(f)
The x and y component of electric field.
(f)

Answer to Problem 82P
The x and y component of electric field is
Explanation of Solution
Write the expression for the x component of electric field.
Here,
Write the equation for y component of electric field.
Here,
Conclusion:
Substitute,
Substitute,
Thus, the x and y component of electric field is
Want to see more full solutions like this?
Chapter 20 Solutions
Principles of Physics: A Calculus-Based Text
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- Sketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forward
- 2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward1). Determine the equivalent capacitance of the combination shown when C = 12 pF. +11/20 2C C Carrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





