Concept explainers
(a)
The velocity of the particles.
(a)
Answer to Problem 70P
The velocity of the particles is
Explanation of Solution
Write the expression from conservation of momentum.
Here,
Write the equation for initial momentum.
Here,
Write the equation for final momentum.
Here,
Conclusion:
Substitute,
Thus, the velocity of the particles is
(b)
The closest distance.
(b)
Answer to Problem 70P
The closest distance is
Explanation of Solution
Here, initial potential energy is zero.
Write the expression from conservation of energy.
Here,
Write the equation for initial kinetic energy.
Write the equation for final kinetic energy.
Write the equation for final potential energy.
Here,
Conclusion:
Substitute,
Thus, the closest distance is
(c)
The velocity of first particle.
(c)
Answer to Problem 70P
The velocity of first particle is
Explanation of Solution
The initial velocity of second particle is zero.
Write the expression from relative velocity equation.
Conclusion:
Substitute,
Thus, the velocity of first particle is
(d)
The velocity of second particle.
(d)
Answer to Problem 70P
The velocity of second particle is
Explanation of Solution
Write the expression from relative velocity equation.
Conclusion:
Substitute,
Thus, the velocity of second particle is
Want to see more full solutions like this?
Chapter 20 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Review. From a large distance away, a particle of mass m1, and positive charge q1 is fired at speed in the positive x direction straight toward a second particle, originally stationary but free to move, with mass m2, and positive charge q2. Both particles are constrained to move only along the x axis. (a) At the instant of closest approach, both particles will be moving at the same velocity. Find this velocity, (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the particle of mass m1, and (d) the particle of mass m2.arrow_forwardReview. Two insulating spheres have radii 0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg, and uniformly distributed charges 2.00 C and 3.00 C. They are released from rest when their centers are separated by 1.00 m. (a) How fast will each be moving when they collide? (b) What If? If the spheres were conductors, would the speeds be greater or less than those calculated in part (a)? Explain.arrow_forwardUnreasonable Results A proton has a mass of 1.671027 kg. A physicist measures the proton's total energy to be 50.0 MeV. (a) What is the proton's kinetic energy? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- (a) At what speed will a proton move in a circular path of the same radius as the electron in the previous exercise? (b) What would the radius of the path be if tlie proton had the same speed as the election? (c) What would the radius be if the proton had tlie same kinetic energy' as die electron? (d) The same momentum?arrow_forwardA Van de Graaff accelerator utilizes a 50.0 MV potential difference to accelerate charged particles such as protons. (a) What is the velocity of a proton accelerated by such a potential? (b) An electron?arrow_forwardA particle of mass m and charge q moves at high speed along the x axis. It is initially near x = , and it ends up near x = +. A second charge Q is fixed at the point x = 0, y = d. As the moving charge passes the stationary charge, its x component of velocity does not change appreciably, but it acquires a small velocity in the y direction. Determine the angle through which the moving charge is deflected from the direction of its initial velocity.arrow_forward
- (a) Find the potential difference VB required to stop an electron (called a slopping potential) moving with an initial speed of 2.85 107 m/s. (b) Would a proton traveling at the same speed require a greater or lesser magnitude potential difference? Explain. (c) Find a symbolic expression for the ratio of the proton stopping potential and the electron stopping potential, Vp/Ve. The answer should be in terms of the proton mass mp and electron mass me.arrow_forwardRank the potential energies of the four systems of particles shown in Figure OQ20.6 from largest to smallest. Include equalities if appropriate. Figure OQ20.6arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forward
- A filament running along the x axis from the origin to x = 80.0 cm carries electric charge with uniform density. At the point P with coordinates (x = 80.0 cm, y = 80.0 cm), this filament creates electric potential 100 V. Now we add another filament along the y axis, running from the origin to y = 80.0 cm, carrying the same amount of charge with the same uniform density. At the same point P, is the electric potential created by the pair of filaments (a) greater than 200 V, (b) 200 V, (c) 100 V, (d) between 0 and 200 V, or (e) 0?arrow_forwardA uniformly charged ring of radius R = 25.0 cm carrying a total charge of 15.0 C is placed at the origin and oriented in the yz plane (Fig. P24.54). A 2.00-g particle with charge q = 1.25 C, initially at the origin, is nudged a small distance x along the x axis and released from rest. The particle is confined to move only in the x direction. a. Show that the particle executes simple harmonic motion about the origin. b. What is the frequency of oscillation for the particle? Figure P24.54arrow_forwardA proton (m=1.67×10-27kg, q=+1.60×10-19C) is moving towards a stationary point charge (Q = +1.50 μC). The proton is initially has a speed of vi=2.50×106m/s, and is a distance of 6.50 meters away from the point charge.(a)How fast is the proton moving (in m/s) when it is 3.50 meters away from thepoint charge? Use conservation of energy.(b)How far is the proton from the point charge (in cm) when it comes to a stop?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning