bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20, Problem 70P

(a)

To determine

The velocity of the particles.

(a)

Expert Solution
Check Mark

Answer to Problem 70P

The velocity of the particles is vf=(m1v1i/m1+m2).

Explanation of Solution

Write the expression from conservation of momentum.

Pi=Pf        (I)

Here, Pi is the initial momentum and Pf is the final momentum.

Write the equation for initial momentum.

  Pi=(m1v1i)+(m2v2i)        (II)

Here, m1,m2 are the masses, v1i,v2i are the initial velocities of the objects.

Write the equation for final momentum.

  Pf=(m1+m2)vf        (III)

Here, vf are the final velocities of the objects.

Conclusion:

Substitute, (m1+m2)vf for Pf, (m1v1i)+(m2v2i) for Pi, 0m/s for v2i in Equation (I) to find vf.

  (m1v1i)+(m2v2i)=(m1+m2)vfvf=(m1v1i)+(m2(0))(m1+m2)=(m1v1i)(m1+m2)

Thus, the velocity of the particles is vf=(m1v1i/m1+m2).

(b)

To determine

The closest distance.

(b)

Expert Solution
Check Mark

Answer to Problem 70P

The closest distance is r(2kq1q2(m1+m2)/m1m2v1i2)_.

Explanation of Solution

Here, initial potential energy is zero.

Write the expression from conservation of energy.

Ki=Kf+Uf        (IV)

Here, Ki,Kf are the initial and final kinetic energy and Uf is the final potential energy.

Write the equation for initial kinetic energy.

  Ei=12(m1(v1i)2)+12(m2(v2i)2)        (V)

Write the equation for final kinetic energy.

  Ef=12(m1+m2)(vf)2        (VI)

Write the equation for final potential energy.

  Uf=kq1q2r        (VII)

Here, q1,q2 are the charges, k is Coulomb’s constant, r is distance.

Conclusion:

Substitute, 12(m1(v1i)2)+12(m2(v2i)2) for Ei, 12(m1+m2)(vf)2 for Ef, kq1q2r for Ufq2, ,0m/s for v2i in Equation (VII) to find r.

12(m1(v1i)2)+12(m2(0)2)=12(m1+m2)(vf)2+[kq1q2r]m1m2v1i2=2kq1q2(m1+m2)rr=2kq1q2(m1+m2)m1m2v1i2

Thus, the closest distance is r(2kq1q2(m1+m2)/m1m2v1i2)_.

(c)

To determine

The velocity of first particle.

(c)

Expert Solution
Check Mark

Answer to Problem 70P

The velocity of first particle is v1f=((m1m2)v1i/m1+m2)_.

Explanation of Solution

The initial velocity of second particle is zero.

Write the expression from relative velocity equation.

v1i=v2fv1f        (X)

Conclusion:

Substitute, v1i+v1f for v2f, (m1+m2)vf for Pf, (m1v1i)+(m2v2i) for Pi, 0m/s for v2i in Equation (I) to find v1f.

  m1v1i=m1v1f+m2(v1i+v1f)v1f=(m1m2m1+m2)v1i

Thus, the velocity of first particle is v1f=((m1m2)v1i/m1+m2)_.

(d)

To determine

The velocity of second particle.

(d)

Expert Solution
Check Mark

Answer to Problem 70P

The velocity of second particle is (2m1v1i/m1+m2)_.

Explanation of Solution

Write the expression from relative velocity equation.

v1i=v2fv1f        (XI)

Conclusion:

Substitute, ((m1m2)v1i/m1+m2) for v1f in Equation (XI) to find v2f.

  v1i=v2f[((m1m2)v1i/m1+m2)]v2f=v1i+[((m1m2)v1i/m1+m2)]=2m1v1im1+m2

Thus, the velocity of second particle is (2m1v1i/m1+m2)_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Phys 22

Chapter 20 Solutions

Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term

Ch. 20 - Prob. 2OQCh. 20 - A proton is released from rest at the origin in a...Ch. 20 - By what factor is the capacitance of a metal...Ch. 20 - Prob. 5OQCh. 20 - Rank the potential energies of the four systems of...Ch. 20 - Prob. 7OQCh. 20 - In a certain region of space, a uniform electric...Ch. 20 - Prob. 9OQCh. 20 - Prob. 10OQCh. 20 - Prob. 11OQCh. 20 - A parallel-plate capacitor is connected to a...Ch. 20 - Rank the electric potential energies of the...Ch. 20 - Four particles are positioned on the rim of a...Ch. 20 - Prob. 15OQCh. 20 - A filament running along the x axis from the...Ch. 20 - An electronics technician wishes to construct a...Ch. 20 - Prob. 18OQCh. 20 - Prob. 19OQCh. 20 - A parallel-plate capacitor filled with air carries...Ch. 20 - Prob. 21OQCh. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Why is it dangerous to touch the terminals of a...Ch. 20 - Prob. 10CQCh. 20 - Prob. 11CQCh. 20 - Prob. 12CQCh. 20 - A uniform electric field of magnitude 325 V/m is...Ch. 20 - Prob. 2PCh. 20 - Calculate the speed of a proton that is...Ch. 20 - Prob. 4PCh. 20 - An electron moving parallel to the x axis has an...Ch. 20 - (a) Find the potential at a distance of 1.00 cm...Ch. 20 - Prob. 8PCh. 20 - Given two particles with 2.00-C charges as shown...Ch. 20 - Three particles with equal positive charges q are...Ch. 20 - The three charged particles in Figure P20.11 are...Ch. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Review. A light, unstressed spring has length d....Ch. 20 - Review. Two insulating spheres have radii 0.300 cm...Ch. 20 - Review. Two insulating spheres have radii r1 and...Ch. 20 - Two particles each with charge +2.00 C are located...Ch. 20 - Prob. 18PCh. 20 - Two particles, with charges of 20.0 nC and 20.0...Ch. 20 - At a certain distance from a charged particle, the...Ch. 20 - A particle with charge +q is at the origin. A...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - A rod of length L (Fig. P20.26) lies along the x...Ch. 20 - For the arrangement described in Problem 26,...Ch. 20 - A wire having a uniform linear charge density is...Ch. 20 - A uniformly charged insulating rod of length 14.0...Ch. 20 - How many electrons should be removed from an...Ch. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - (a) How much charge is on each plate of a 4.00-F...Ch. 20 - Two conductors having net charges of +10.0 C and...Ch. 20 - Prob. 35PCh. 20 - A spherical capacitor consists of a spherical...Ch. 20 - Prob. 37PCh. 20 - A variable air capacitor used in a radio tuning...Ch. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - (a) Regarding the Earth and a cloud layer 800 m...Ch. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - (a) Find the equivalent capacitance between points...Ch. 20 - Four capacitors are connected as shown in Figure...Ch. 20 - Prob. 46PCh. 20 - According to its design specification, the timer...Ch. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Three capacitors are connected to a battery as...Ch. 20 - Find the equivalent capacitance between points a...Ch. 20 - Consider the circuit shown in Figure P20.52, where...Ch. 20 - Prob. 53PCh. 20 - A parallel-plate capacitor has a charge Q and...Ch. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58PCh. 20 - Prob. 59PCh. 20 - Prob. 60PCh. 20 - A uniform electric field E = 3 000 V/m exists...Ch. 20 - Prob. 62PCh. 20 - Prob. 63PCh. 20 - Prob. 64PCh. 20 - Prob. 65PCh. 20 - A parallel-plate capacitor in air has a plate...Ch. 20 - Lightning can be studied with a Van de Graaff...Ch. 20 - Prob. 68PCh. 20 - Prob. 69PCh. 20 - Prob. 70PCh. 20 - Prob. 71PCh. 20 - Prob. 72PCh. 20 - Prob. 73PCh. 20 - Prob. 74PCh. 20 - Prob. 75PCh. 20 - Prob. 76PCh. 20 - Prob. 77PCh. 20 - Prob. 78PCh. 20 - Prob. 79PCh. 20 - Prob. 80PCh. 20 - Prob. 81PCh. 20 - Prob. 82PCh. 20 - A 10.0-F capacitor is charged to 15.0 V. It is...Ch. 20 - Two large, parallel metal plates, each of area A,...Ch. 20 - A capacitor is constructed from two square,...Ch. 20 - Two square plates of sides are placed parallel to...Ch. 20 - Determine the equivalent capacitance of the...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY