Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 12P
To determine
The smallest distance between the alpha particle and the nucleus before the alpha particle reverses direction.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 17: An evacuated tube uses a potential difference of AV= 0.56 kV to accelerate electrons, which then hit a copper plate and
produce X-rays.
. Part (a) Write an expression for the non-relativistic speed of these electrons v in terms of e, AV, and m, assuming the electrons start from rest.
v =
AV
7
9
HOME
a
b
d.
4
5
e
h
1
j
k
P
END
m
S
V
VO BACKSPACE
CLEAR
DEL
Submit
Hint
Feedback
I give up!
Hints: 0% deduction per hint. Hints remaining: 2
Feedback: 1% deduction per feedback.
Part (b) Calculate the non-relativistic speed of these electrons v in m/s.
An evacuated tube uses a potential difference of ΔV = 0.38 kV to accelerate electrons, which then hit a copper plate and produce X-rays
Write an expression for the non-relativistic speed of these electrons v in terms of e, ΔV, and m, assuming the electrons start from rest.
Calculate the non-relativistic speed of these electrons v in m/s.
In the simple Bohr model of the ground state of the hydrogen atom, the electron travels in a circular orbit around a fixed proton. The radius of the orbit is 5.28 × 10−11 m, and the speed of the electron is 2.18 × 106 m/s. The mass of an electron is 9.11 × 10−31 kg . What is the force on the electron?
Chapter 20 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 20.1 - In Figure 20. 1, two points and are located...Ch. 20.2 - The labeled points in Figure 20.4 are on a series...Ch. 20.3 - A spherical balloon contains a positively charged...Ch. 20.3 - In Active Figure 20.8a, take q1 to be a negative...Ch. 20.4 - In a certain region of space, the electric...Ch. 20.7 - A capacitor stores charge Q at a potential...Ch. 20.8 - Prob. 20.7QQCh. 20.9 - Prob. 20.8QQCh. 20.10 - If you have ever tried to hang a picture or a...Ch. 20 - A parallel-plate capacitor is charged and then is...
Ch. 20 - Prob. 2OQCh. 20 - A proton is released from rest at the origin in a...Ch. 20 - By what factor is the capacitance of a metal...Ch. 20 - Prob. 5OQCh. 20 - Rank the potential energies of the four systems of...Ch. 20 - Prob. 7OQCh. 20 - In a certain region of space, a uniform electric...Ch. 20 - Prob. 9OQCh. 20 - Prob. 10OQCh. 20 - Prob. 11OQCh. 20 - A parallel-plate capacitor is connected to a...Ch. 20 - Rank the electric potential energies of the...Ch. 20 - Four particles are positioned on the rim of a...Ch. 20 - Prob. 15OQCh. 20 - A filament running along the x axis from the...Ch. 20 - An electronics technician wishes to construct a...Ch. 20 - Prob. 18OQCh. 20 - Prob. 19OQCh. 20 - A parallel-plate capacitor filled with air carries...Ch. 20 - Prob. 21OQCh. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Why is it dangerous to touch the terminals of a...Ch. 20 - Prob. 10CQCh. 20 - Prob. 11CQCh. 20 - Prob. 12CQCh. 20 - A uniform electric field of magnitude 325 V/m is...Ch. 20 - Prob. 2PCh. 20 - Calculate the speed of a proton that is...Ch. 20 - Prob. 4PCh. 20 - An electron moving parallel to the x axis has an...Ch. 20 - (a) Find the potential at a distance of 1.00 cm...Ch. 20 - Prob. 8PCh. 20 - Given two particles with 2.00-C charges as shown...Ch. 20 - Three particles with equal positive charges q are...Ch. 20 - The three charged particles in Figure P20.11 are...Ch. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Review. A light, unstressed spring has length d....Ch. 20 - Review. Two insulating spheres have radii 0.300 cm...Ch. 20 - Review. Two insulating spheres have radii r1 and...Ch. 20 - Two particles each with charge +2.00 C are located...Ch. 20 - Prob. 18PCh. 20 - Two particles, with charges of 20.0 nC and 20.0...Ch. 20 - At a certain distance from a charged particle, the...Ch. 20 - A particle with charge +q is at the origin. A...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - A rod of length L (Fig. P20.26) lies along the x...Ch. 20 - For the arrangement described in Problem 26,...Ch. 20 - A wire having a uniform linear charge density is...Ch. 20 - A uniformly charged insulating rod of length 14.0...Ch. 20 - How many electrons should be removed from an...Ch. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - (a) How much charge is on each plate of a 4.00-F...Ch. 20 - Two conductors having net charges of +10.0 C and...Ch. 20 - Prob. 35PCh. 20 - A spherical capacitor consists of a spherical...Ch. 20 - Prob. 37PCh. 20 - A variable air capacitor used in a radio tuning...Ch. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - (a) Regarding the Earth and a cloud layer 800 m...Ch. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - (a) Find the equivalent capacitance between points...Ch. 20 - Four capacitors are connected as shown in Figure...Ch. 20 - Prob. 46PCh. 20 - According to its design specification, the timer...Ch. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Three capacitors are connected to a battery as...Ch. 20 - Find the equivalent capacitance between points a...Ch. 20 - Consider the circuit shown in Figure P20.52, where...Ch. 20 - Prob. 53PCh. 20 - A parallel-plate capacitor has a charge Q and...Ch. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58PCh. 20 - Prob. 59PCh. 20 - Prob. 60PCh. 20 - A uniform electric field E = 3 000 V/m exists...Ch. 20 - Prob. 62PCh. 20 - Prob. 63PCh. 20 - Prob. 64PCh. 20 - Prob. 65PCh. 20 - A parallel-plate capacitor in air has a plate...Ch. 20 - Lightning can be studied with a Van de Graaff...Ch. 20 - Prob. 68PCh. 20 - Prob. 69PCh. 20 - Prob. 70PCh. 20 - Prob. 71PCh. 20 - Prob. 72PCh. 20 - Prob. 73PCh. 20 - Prob. 74PCh. 20 - Prob. 75PCh. 20 - Prob. 76PCh. 20 - Prob. 77PCh. 20 - Prob. 78PCh. 20 - Prob. 79PCh. 20 - Prob. 80PCh. 20 - Prob. 81PCh. 20 - Prob. 82PCh. 20 - A 10.0-F capacitor is charged to 15.0 V. It is...Ch. 20 - Two large, parallel metal plates, each of area A,...Ch. 20 - A capacitor is constructed from two square,...Ch. 20 - Two square plates of sides are placed parallel to...Ch. 20 - Determine the equivalent capacitance of the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- has the 3. A positron (the antiparticle of the electron) same mass as an electron (9.11×10-³¹ kg) but the opposite charge, +e = +1.602×10-¹9 C. Suppose a positror moves in the vicinity of an alpha particle, which has a charge +2e = 3.204×10-¹⁹ C. The alpha particle is over 7000 times as massive as the positron, so we assume that it is at rest in some inertial frame of reference. When the positron is 1.00×10-¹⁰ m from the alpha particle, it is moving directly away from the alpha particle at a speed of 3.00×10⁰ m/s. a) What is the positron's speed when the two particles are 2.00×10-¹0 m apart? b) What is the positron's speed when it is very far away from the alpha particle? c) Repeat a) after replacing the positron with an electron. d) Repeat b) after replacing the positron with an electron. The result here tells you whether the electron will eventually turn around and head toward the alpha particle. Will the electron turn around? If so, at what distance away does it turn around (i.e.,…arrow_forwardPlz helparrow_forwardThe mass of an electron is 9.11 x 10 ^-31 kg. The mass of a proton is 1.67 x 10 ^-27 kg. They are about 5.3×10^ −11 m apart in a hydrogen atom. What is the gravitational force between these two particles in the hydrogenatom?arrow_forward
- Consider an electron, of charge magnitude e = 1.602 × 10-1⁹ C and mass m₂ = 9.11 × 10-31 kg, moving in an electric field with an electric field magnitude E = 4 x 10² N/C, similar to what Thana observed in the simulation. Let the length of the plates be L = 50 cm, and the distance between them be d = 20 cm. Find the maximum speed, v, the electron could be moving if it enters the space halfway between and parallel to the two plates to just barely strike one of the plates. m/s If the field is pointing upward, which plate will Thana conclude the electron strikes at this speed? O The upper plate, because the electron charge magnitude is positive. O The upper plate, because we are only considering the magnitude of the electron charge, and magnitudes are always positive. O The lower plate, because the electron is attracted to the negative plate. O The lower plate, because the electron is negatively charged.arrow_forwardElectron capture is a variant on beta-radiation. The lightest nucleus to decay by electron capture is 7Be -- beryllium-7. The daughter nucleus is 7Li -- lithium-7. The electron is transformed into a massless particle (a neutrino): e − + 7 B e + ⟶ 7 L i + ν The initial electron is bound in the atom, so the beryllium mass includes the electron. In fact, since the electron starts bound in the atom, a more-accurate statement of the nuclear reaction is probably: 7 B e ⟶ 7 L i + ν The masses are beryllium: 7.016929 u, and lithium: 7.016003 u, and refer to the neutral atom as a whole. (Use uc and uc2 as your momentum and energy units -- but carry them along in your calculation.) The initial beryllium atom is stationary. Calculate the speed of the final lithium nucleus in km/s. (all the energy released goes into the lighter particle. c = 300,000 km/s)arrow_forwardElectron capture is a variant on beta-radiation. The lightest nucleus to decay by electron capture is 7Be -- beryllium-7. The daughter nucleus is 7Li -- lithium-7. The electron is transformed into a massless particle (a neutrino): e − + 7 B e + ⟶ 7 L i + ν The initial electron is bound in the atom, so the beryllium mass includes the electron. In fact, since the electron starts bound in the atom, a more-accurate statement of the nuclear reaction is probably: 7 B e ⟶ 7 L i + ν The masses are beryllium: 7.016929 u, and lithium: 7.016003 u, and refer to the neutral atom as a whole. (Use uc and uc2 as your momentum and energy units -- but carry them along in your calculation.) The initial beryllium atom is stationary. Calculate the speed of the final lithium nucleus in km/s. (You will make life much easier for yourself if you recognize that practically all the energy released goes into the lighter particle. c = 300,000 km/s)arrow_forward
- Helpful information: (1) An alpha particle is a helium nucleus, (2) e = 1.6 × 10-¹⁹ C, (3) k₂ = 9.0 × 10⁹ Nm² C-2, (4) 1nm = 1 × 10-⁹ m 1-An alpha particle lies on the x-axis, a distance of 1.0 nanometer from a proton (in this set-up, the alpha particle is at the origin while the proton is in the positive direction). Which of the following choices below represents the magnitude of the electric force on the alpha particle? (a) 2.3 × 10-10 N (b) 4.6 × 10-10 N (c) 2.3 x 10-19 N (d) 4.6 x 10-19 N cing the voltage so following insta choices below at a time! 1.00 s?arrow_forwardwhere 1 eV = 1.602 × 10-19 J. Express the neutron’s kinetic energy in electron volts. b) In nuclear physics, it is convenient to express the energy of particles in electron volts (eV), 2) A neutron with a mass of 1.7 × 10-27 kg passes between two points in a detector 6 m apart in a time interval of 1.8 x 10-4 s. In the tendon at this pon a) Find the kinetic energy of the neutron in joulesarrow_forwardCalculate the kinetic energy in Joules of these various objects E.K.=1/2mv^2 An electron travelling at 2.7 ×106 m/s, m = 9.119×10-31 kg A mole of electrons traveling at 2.7 ×106 m/s ,1 mol = 6.022×1023 particles A proton traveling at 60.00% c, m = 1.673 × 10-27 kg(c = 3.0×108 m/s) A baseball traveling at 75 mph(m = 0.145 kg, 1 mile = 1.61 km=1610m, 1 hour = 3600s)arrow_forward
- A proton is fired from far away towards the nucleus of a mercury atom. Mercury is element number 80, and the diameter of the nucleus is 14.0 fm. If the proton is fired at a speed of 13600000 m/s, what is its closest approach to the surface of the nucleus (in fm)? Assume that the nucleus remains at rest.arrow_forwardThe nucleus of an atom consists of protons and neutrons (no electrons). A nucleus of a carbon-12 isotope contains six protons and six neutrons, while a nitrogen-14 nucleus comprises seven protons and seven neutrons. A graduate student performs a nuclear physics experiment in which she bombards nitrogen-14 nuclei with very high speed carbon-12 nuclei emerging from a particle accelerator. As a result of each such collision, the two nuclei disintegrate completely, and a mix of different particles are emitted, including electrons, protons, antiprotons (with electric charge -e each), positrons (with charge +e each), and various neutral particles (including neutrons and neutrinos). For a particular collision, she detects the emitted products and find 17 protons, 4 antiprotons, 7 positrons, and 21 neutral particles. How many electrons are also emitted?arrow_forwardSuppose a photon, proton, and electron all have the same total energy E. Rank the magnitude of their momenta from smallest to greatest. (a) photon, electron, proton (b) proton, photon, electron (c) electron, photon, proton (d) electron, proton, photon (e) proton, electron, photonarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY