Concept explainers
(a)
The brightness of the star Betelgeuse in terms of a fraction of the Sun’s brightness. It is given that Betelgeuse is transformed from a red supergiant to a Type II supernova at the distance of 425 ly from Earth.
(a)
Answer to Problem 62Q
Solution:
Explanation of Solution
Given data:
The distance of the star from Earth is
Formula used:
The expression for apparent magnitude of a supernova is,
Here,
The expression for ratio of brightness of two objects is,
Here,
Explanation:
Convert the distance from light years to parsec as follows:
Therefore, the provided distance of the star from Earth in parsecs is,
Write the formula for apparent magnitude of Type II supernova.
The absolute magnitude for Type II supernova is
The apparent magnitude of the Sun is
Write the expression for the brightness ratio of Betelgeuse and Sun.
Here, the subscript S refers to the corresponding quantities for the Sun and b is the brightness of Betelgeuse.
Substitute
Conclusion:
So, the supernova is
(b)
The comparison between the brightness of the supernova and that of Venus. It is given that it is transformed from a red supergiant to Type II supernova at the distance of 425 ly from Earth and the brightness of Venus is
(b)
Answer to Problem 62Q
Solution:
The ratio of the brightness of the supernova to that of Venus is 710.
Explanation of Solution
Given data:
The brightness of Venus is
The distance of the star from Earth is
Formula used:
The expression for apparent magnitude of a supernova is,
Here,
The expression for the ratio of brightness of two objects is,
Here,
Explanation:
Refer to part (a). The brightness of the star with respect to that of the Sun is
In order to compare the brightness of the star with that of Venus, determine the ratio of their respective brightness (relative to the Sun), that is,
Substitute
Conclusion:
So, the supernova is 710 times brighter than Venus.
Want to see more full solutions like this?
Chapter 20 Solutions
Universe
- A visual binary has a parallax of 0.4 arcseconds, a maximum separation a = 6.0 arcseconds, and an orbital period P = 80 years. What is the total mass of the binary system in units of Mo, assuming a circular orbit?arrow_forwardAs we have discussed, Sirius B in the Sirius binary system is a white dwarf with MB ∼ 1M , LB ∼ 0.024L ,and rB ∼ 0.0084r . For such a white dwarf, the temperature at the center is estimated to be ∼ 107 K.If Sirius B’s luminosity were due to hydrogen fusion, what is the upper limit of the mass fraction of thehydrogen in such a white dwarf?Step 1: Calculate the observed energy production rate per unit mass (remember luminosity is energy outputper unit time).Step 2: Use the per unit mass energy generation rate of hydrogen fusion (via PP chain) to estimate thepossible hydrogen mass fraction given the condition at the center of the white dwarf.arrow_forwardThe star HD 93250 in the Carina Nebula is a bright O-type star. It has a reported apparent magnitude in the V band of mV = 7.41 and V band absolute magnitude of MV = −6.14. Using these values calculate the distance to HD 93250 in parsec. The distance to HD 93250 has been measured by other means as 2350 pc. Compare your calculated value of the distance with the measured value, and give a possible explanation for any difference. Calculate the value of the interstellar extinction in the V band AV that would account for the difference in the distances. The parameter E(B − V ) = AB − AV , where AB and AV are the extinctions in the B and V bands, is often used to characterize interstellar extinction. For the star HD 93250 the value E(B − V ) = 0.48 has been measured. Given the above value of E(B − V ) for HD 93250, calculate the extinction in the B band, and explain why the parameter E(B − V ) is often called the “reddening.” The B band apparent magnitude of HD 93250 is mB = 8.12. Calculate…arrow_forward
- A cepheid star is located at a distance of 24.8kpc from the Earth and has an apparent visual magnitude of 13.3. Determine its pulsation period in days. Consider the following expression of the Leavitt relation My -2.78 log Pdays - 1.35, where My is the absolute visual magnitude and Pdays the pulsation period in days to 2 decimal places.arrow_forwardBetelgeuse is a red giant at a distance of 428 light years. In the future it will become a supernova similar to Tycho's supernova which was observed in 1572 and lies at a distance of 9800 light years. At its peak, its brightness was similar to that of Venus (which has a peak apparent magnitude of -4). What might we expect the peak apparent magnitude of the Betelgeuse supernova explosion to be?arrow_forwardFor the PP chain 0.7% of the mass participating in nuclear fusion is liberated as energy which produces a star's luminosity. Assume that the core of a main sequence star consists of 10% of its total mass. Hence, estimate the lifetime of a star on the main sequence in terms of its luminosity L/L. Give your answer in years. You may use the observed mass-luminosity relation L x M³.5, where M is the star's total mass. Using typical values, calculate estimates for the main sequence lifetime of a KO star and a 05 star. Describe briefly why your estimate might be more accurate for K stars compared to O stars.arrow_forward
- (astronomy) The present-day density of the sun is about 1.4 g/cm3. The volume of a sphere is 4/3πr3. The density of a star compared to the density of the sun is (Rsun/Rstar)3. If the sun became a red giant and expanded to a radius 50 times its present radius, what would its density be in g/cm3 ?arrow_forwardA main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.arrow_forward= 2000 K and a radius of R, A young recently formed planet has a surface temperature T Jupiter radii (where Jupiter's radius is 7 x 107 m). Calculate the luminosity of the planet and 2 determine the ratio of the planet's luminosity to that of the Sun.arrow_forward
- A Type Ia supernova is observed and achieves an apparent magnitude of m = 19.89 at peak brightness. The absolute magnitudes of Type Ia supernovae at peak brightness are known to be M=−19. Determine the distance to the supernovae in units of Mpc.arrow_forwardConsider the image above of the Cassiopeia A (Cas A) supernova remnant. The supernova explosion that caused this remnant was observed on earth about 300 years ago. It is about 3000 pc away. Since that time, the shockwave from the supernova has expanded to form the roughly spherical cloud pictured above. From the center point to the edge of the cloud is about 3 pc. Compute the angular diameter of the Cas A supernova remnant as viewed from Earth. Express your answer in arcminutes.arrow_forwardThe apparent magnitude of a star is observed to vary between m = +0.4 and m = +0.1 because the star pulsates and hence continuously changes its radius and temperature. When at its peak brightness, the star’s radius has increased by a factor of two compared to its value at the mini- mum brightness. Determine the value of T+/T−, where T+ is the temperature when the star is at its peak brightness and T− is the temperature when the star is at it minimum brightness. Note: we expect T+/T− < 1 because the star’s temperature decreases as its radius increases.arrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning