Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 62Q

(a)

To determine

The brightness of the star Betelgeuse in terms of a fraction of the Sun’s brightness. It is given that Betelgeuse is transformed from a red supergiant to a Type II supernova at the distance of 425 ly from Earth.

(a)

Expert Solution
Check Mark

Answer to Problem 62Q

Solution:

7.1×107b

Explanation of Solution

Given data:

The distance of the star from Earth is 425ly.

Formula used:

The expression for apparent magnitude of a supernova is,

m=M+5logd5

Here, m is the apparent magnitude, M is the absolute magnitude of Type II supernova and d is the distance of the star from Earth in parsecs.

The expression for ratio of brightness of two objects is,

b1b2=10(m1m2)2.5

Here, b1andb2 are the brightness and m1andm2 are the apparent magnitudes of the objects.

Explanation:

Convert the distance from light years to parsec as follows:

1ly=0.3pc

Therefore, the provided distance of the star from Earth in parsecs is,

d=425 ly(0.3 pc1ly)=130 pc

Write the formula for apparent magnitude of Type II supernova.

m=M+5logd5

The absolute magnitude for Type II supernova is 17. Substitute 17 for m and 130 for d.

m=17+5log(130)5=11.4

The apparent magnitude of the Sun is 26.8.

Write the expression for the brightness ratio of Betelgeuse and Sun.

bbS=10(mmS)2.5

Here, the subscript S refers to the corresponding quantities for the Sun and b is the brightness of Betelgeuse.

Substitute 26.8 for mS and 11.4 for m.

bBbS=1011.4(26.8)2.5=1015.42.5bB=7.1×107b

Conclusion:

So, the supernova is 7.1×107 times brighter than the Sun.

(b)

To determine

The comparison between the brightness of the supernova and that of Venus. It is given that it is transformed from a red supergiant to Type II supernova at the distance of 425 ly from Earth and the brightness of Venus is 109b.

(b)

Expert Solution
Check Mark

Answer to Problem 62Q

Solution:

The ratio of the brightness of the supernova to that of Venus is 710.

Explanation of Solution

Given data:

The brightness of Venus is 109b.

The distance of the star from Earth is 425ly.

Formula used:

The expression for apparent magnitude of a supernova is,

m=M+5logd5

Here, m is the apparent magnitude, M is the absolute magnitude of Type II supernova and d is the distance of the star from Earth in parsecs.

The expression for the ratio of brightness of two objects is,

b1b2=10(m1m2)2.5

Here, b1andb2 are the brightness and m1andm2 are the apparent magnitudes of the objects.

Explanation:

Refer to part (a). The brightness of the star with respect to that of the Sun is 7.1×107b.

In order to compare the brightness of the star with that of Venus, determine the ratio of their respective brightness (relative to the Sun), that is,

ratio=bbV

Substitute 7.1×107b for b and 109b for bV.

ratio=7.1×107b109b=710

Conclusion:

So, the supernova is 710 times brighter than Venus.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut R
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…

Chapter 20 Solutions

Universe

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College