Concept explainers
BIO Power lines—do their magnetic fields pose a risk? Power lines produce both electric and magnetic fields The interior of the human body is an electrical conductor, and as a result, electric fields are greatly reduced in magnitude within the body The electric fields inside the body from power lines are much smaller than electric fields normally existing in the body.
However, magnetic fields are not reduced in the body Earth's magnetic field, approximately
The magnetic field from a high-voltage power line located 40 m above the ground carrying a 100-A current is much smaller than Earth's
Wires that provide electric power for household appliances also produce electric and magnetic fields The current in the wire for a 500-W space heater is about 5 A With the wire located several meters from your body the magnetic field of such an appliance is somewhat smaller than Earth’s magnetic field By comparison laboratory mice lived for several generations in 0.0010-T magnetic fields (20 times Earth’s magnetic field) without any adverse effects.
During the last three decades, electric power use has increased the magnitudes of the
Leukemia rates have declined in recent years, whereas the magnitudes of the B fields created by power lines in our environment have increased significantly. Why does this not necessarily rule out power line magnetic fields as a contributing cause of leukemia? a Correlation studies have no cause-effect relationship.
b. There is no known mechanism for power line magnetic field-induced deaths.
c. The power line magnetic fields cannot penetrate clothing and skin. d Perhaps the power line magnetic field-induced cancers have increased from 0.001 to 0.025 of the cases and other causes have decreased.
e. a, b, and d
f. All of the above
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
College Physics
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Microbiology: An Introduction
Campbell Essential Biology (7th Edition)
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- Is a scientific theory supposed to just be someone's idea about somethingarrow_forwardwhat is the agenda of physicsarrow_forwardWatch the video of Cooper’s play, while conducting and documenting your observation using a chosen observation tool. Case Study 1b - Cooper Carol has asked you to support the babies and toddler’s room educators this week. She has requested that you complete an observation on Cooper, who is a 10-month-old toddler. Carol wants to see how well you conduct an observation and is interested in how you manage to communicate in any observations made, using a strengths-based, non-judgemental, anti-biased approach, as this is a fundamental part of creating a supportive and respectful culture at Little Catalysts ELC. Video: Cooper's play (6:45 min) Resources Module 7 eLearns Template: Learning story observation, Section 1 Template: Running record observation, Section 1 Template: Anecdotal record observation, Section 1 Video: Cooper's play (6:45 min) Complete and upload an observation of Cooper to support educators in future curriculum planning. Choose one (1) of the observation…arrow_forward
- 1. An ideal gas is taken through a four process cycle abcda. State a has a pressure of 498,840 Pa. Complete the tables and plot/label all states and processes on the PV graph. Complete the states and process diagrams on the last page. Also, provide proper units for each column/row heading in the tables. Pressure (Pa) 500,000 450,000 400,000 350,000 300,000 250,000 200,000 150,000 100,000 Process ab bc cd da States P( ) V( ) 50,000 0 0.000 T = 500 K T= 200 K 0.001 0.002 0.003 0.004 0.005 Volume (m^3) Nature of Process isothermal expansion to Vb = 0.005 m³ (T = 500 K) isometric isothermal compression to V₁ = 0.003 m³ (T = 200 K) adiabatic compression to VA = 0.001 m³ b C a T() U ( ) Processes a-b Q( ) +802.852 W() AU ( ) b-c c→d +101.928 da Cyclearrow_forwardPlz no chatgpt Iarrow_forwardA = 45 kN a = 60° B = 20 kN ẞ = 30° Problem:M1.1 You and your friends are on an archaeological adventure and are trying to disarm an ancient trap to do so you need to pull a log straight out of a hole in a wall. You have 1 rope that you can attach to the log and there are currently 2 other ropes and weights attached to the end of the log. You know the force and direction of the ropes currently attached are arranged as shown below what is the magnitude and direction 'e' of the minimum force you need to apply to the third rope for the force on the log to be in direction of line 'a'? What is the resultant force in direction 'a'? a ////// //////arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning