
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 3P
3 The current through a circuit is shown in Figure P20.3. The deflection of a compass needle is shown in the figure Is the picture correct? If not, what is wrong?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
Chapter 20 Solutions
College Physics
Ch. 20 - Review Question 20.1 What aspects of compass...Ch. 20 - Review Question 20.2 What is the direction of the...Ch. 20 - Review Question 20.3 Equation (20.2) defines the...Ch. 20 - Review Question 20.4 If the magnetic force is...Ch. 20 - Review Question 20.5 The definition of a 1-A...Ch. 20 - Review Question 20.6 What is the difference...Ch. 20 - Review Question 20.7 Why is there a difference in...Ch. 20 - You place a metal bar magnet on a swivel and bring...Ch. 20 - 2. An electron moves at constant speed from left...Ch. 20 - 3. What is one tesla?
a.
b.
c.
d. All of the...
Ch. 20 - Choose all that apply. Objects that produce...Ch. 20 - 5. What is one difference between magnetic and...Ch. 20 - 6. Two parallel straight current-carrying wires...Ch. 20 - 7. Choose all of the units that are fundamental,...Ch. 20 - 8. Particles of various masses, charges, and...Ch. 20 - When a diamagnetic material Is placed in an...Ch. 20 - If you triple the speed of a particle entering a...Ch. 20 - In 1911 physicists measured a magnetic field...Ch. 20 - Describe two experiments that will allow you to...Ch. 20 - How can you determine if there is a magnetic field...Ch. 20 - You have a magnet on which the poles are not...Ch. 20 - 15. List as many ways as you can to detect a...Ch. 20 - Prob. 16CQCh. 20 - Prob. 17CQCh. 20 - An electron flies through the magnetic field shown...Ch. 20 - Prob. 19CQCh. 20 - 20. A beam of electrons is not deflected as it...Ch. 20 - 21 A beam of electrons moving toward the east is...Ch. 20 - 22. Why are residents of northern Canada less...Ch. 20 - Prob. 23CQCh. 20 - An electron enters a solenoid at a small angle...Ch. 20 - Two parallel wires carry electric current in the...Ch. 20 - Prob. 26CQCh. 20 - Describe a situation in which an electron will be...Ch. 20 - When a switch is closed a compass needle deflects...Ch. 20 - 2. You have a lightbulb connected to a battery....Ch. 20 - 3 The current through a circuit is shown in Figure...Ch. 20 - 4. Draw field lines for the magnetic field...Ch. 20 - 5. * You need to determine the direction of the ...Ch. 20 - 6.* Two compass needles are fixed at the ends of a...Ch. 20 - 7. * In Houston, Earth’s field has a magnitude of...Ch. 20 - * A 15-g 10-cm-long wire is suspended horizontally...Ch. 20 - Prob. 9PCh. 20 - * A metal rod is connected to a battery through...Ch. 20 - * After you turned on the current in the circuit...Ch. 20 - 13. ** A square coil with 30 turns has sides that...Ch. 20 - * (a) Determine the magnetic force (magnitude and...Ch. 20 - 16. * A 500-turn square coil of wire is hinged to...Ch. 20 - * Electric motor 1 An electric motor has a square...Ch. 20 - 18. ** You make a seesaw by placing a 50-g magnet...Ch. 20 - * Electric motor 2 An electric motor has a...Ch. 20 - 20. Each of the lettered dots a-d shown In Figure...Ch. 20 - Duck gets a lift A duck accumulates a positive...Ch. 20 - 22. An electron of mass kg moves horizontally...Ch. 20 - A 1000-kg car moves west along the equator. At...Ch. 20 - * BIO Magnetic force exerted by Earth on ions in...Ch. 20 - 105m/s. Design a magnetic shield that will deflect...Ch. 20 - s magnetic field.Ch. 20 - 27. * An electron and a proton, moving side by...Ch. 20 - An east-west electric power line carries a 500-A...Ch. 20 - * Pigeons A solenoid of radius 1.0 m with 750...Ch. 20 - * A horizontal current-carrying wire that is...Ch. 20 - Prob. 31PCh. 20 - field inside a long solenoid is given by the...Ch. 20 - * Electron current and magnetic field in H atom In...Ch. 20 - * Two long, parallel wires are separated by 2.0 m....Ch. 20 - * Minesweepers During World War II, explosive...Ch. 20 - 40. An electron moves at the speed of toward the...Ch. 20 - * Mass spectrometer A mass spectrometer has a...Ch. 20 - 42. * Mass spectrometer 2 One type of mass...Ch. 20 - 43. * An ion with charge C moves at speed m/s...Ch. 20 - * A box has either an electric field or a magnetic...Ch. 20 - 45. ** A piece of wire, shown in Figure P20.45 ,...Ch. 20 - 46. ** EST Particles in cosmic rays are mostly...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Power lines—do their magnetic fields pose a...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Magnetic resonance imaging In magnetic...Ch. 20 - BIO Power linesdo their magnetic fields pose a...Ch. 20 - BIO Power linesdo their magnetic fields pose a...Ch. 20 - BIO Power linesdo their magnetic fields pose a...Ch. 20 - BIO Power linesdo their magnetic fields pose a...Ch. 20 - BIO Power linesdo their magnetic fields pose a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If all of Earths nitrogen-fixing prokaryotes were to die suddenly, what would happen to the concentration of ni...
Biology: Life on Earth with Physiology (11th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
44. Two balls undergo a perfectly elastic head-on collision, with one ball initially at rest. If the incoming b...
College Physics: A Strategic Approach (3rd Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY