Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 46EAP
Uranium has two naturally occurring isotopes. 238U has a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Uranium has two naturally occurring isotopes. 238 U has a natural abundance of 99.3% and 235 U has an abundance of 0.7%. It is the rarer 235 U that is needed for nuclear reactors. The isotopes are separated by
forming uranium hexafluoride UF6, which is a gas, then allowing it to diffuse through a series of porous membranes. 235 UF6 has a slightly larger rms speed than 238 UF6 and diffuses slightly faster. Many
repetitions of this procedure gradually separate the two isotopes. What is the ratio of the rms speed of 235 UF 6 to that of
238 UF6?
Express your answer to five significant figures.
At what temperature would the rms speed of helium atoms equal
a. the escape speed from Earth, 1.12 m/s
b. the escape speed from the Moon, 2.37 m/s?
Note: The mass of a helium atom is 6.64 x 10-27 kg and the Boltzmann’s constant is
4.0 L of nitrogen at a pressure of 400 kN m-2 (or kPa) and 1.0 L of argon at a pressure of 200 kN m-2 are introduced into a container of volume 2.0 L.Calculate the partial pressure of nitrogen.
Calculate the partial pressure of argon.
Hence, calculate the total pressure in the container.
A 14.0 L tank contains 250 g of methane (CH4) gas at 27 atm at 298K. Accidentally, 190 g of CO2 was added to the tank. What will be the resulting pressure of the mixture in the tank? Assume that no CH4 leaked out as the CO2 gas was being added.
Chapter 20 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Prob. 9CQCh. 20 - Prob. 1EAP
Ch. 20 - Prob. 2EAPCh. 20 - Prob. 3EAPCh. 20 - Prob. 4EAPCh. 20 - Prob. 5EAPCh. 20 - Prob. 6EAPCh. 20 - Prob. 7EAPCh. 20 - Prob. 8EAPCh. 20 - Prob. 9EAPCh. 20 - Prob. 10EAPCh. 20 - Prob. 11EAPCh. 20 - Prob. 12EAPCh. 20 - Prob. 13EAPCh. 20 - Prob. 14EAPCh. 20 - Prob. 15EAPCh. 20 - Prob. 16EAPCh. 20 - Prob. 17EAPCh. 20 - Prob. 18EAPCh. 20 - Prob. 19EAPCh. 20 - Prob. 20EAPCh. 20 - Prob. 21EAPCh. 20 - Prob. 22EAPCh. 20 - Prob. 23EAPCh. 20 - Prob. 24EAPCh. 20 - Prob. 25EAPCh. 20 - A 10 g sample of neon gas has 1700 J of thermal...Ch. 20 - Prob. 27EAPCh. 20 - A 6.0 m × 8.0 m × 3.0 m room contains air at 20°C....Ch. 20 - Prob. 29EAPCh. 20 - Prob. 30EAPCh. 20 - .0 mol of a monatomic gas interacts thermally with...Ch. 20 - Prob. 32EAPCh. 20 - A rigid container holds 0.20 g of hydrogen gas....Ch. 20 - Prob. 34EAPCh. 20 - .0 mol of monatomic gas A interacts with 3.0 mol...Ch. 20 - Two containers hold several balls. Once a second,...Ch. 20 - Prob. 37EAPCh. 20 - From what height must an oxygen molecule fall in a...Ch. 20 - Dust particles are 10m in diameter. They are...Ch. 20 - Prob. 40EAPCh. 20 - Photons of light scatter off molecules, and the...Ch. 20 - Prob. 42EAPCh. 20 - Prob. 43EAPCh. 20 - a. Find an expression for the vrms of gas...Ch. 20 - Equation 20.3 is the mean free path of a particle...Ch. 20 - Uranium has two naturally occurring isotopes. 238U...Ch. 20 - On earth, STP is based on the average atmospheric...Ch. 20 - .0 × l023 nitrogen molecules collide with a 10 cm2...Ch. 20 - Prob. 49EAPCh. 20 - Prob. 50EAPCh. 20 - A 100 cm3 box contains helium at a pressure of 2.0...Ch. 20 - 2.0 g of helium at an initial temperature of 300 K...Ch. 20 - Prob. 53EAPCh. 20 - Scientists studying the behavior of hydrogen at...Ch. 20 - Prob. 55EAPCh. 20 - Prob. 56EAPCh. 20 - In the discussion following Equation 20.43 it was...Ch. 20 - Prob. 58EAPCh. 20 - n moles of a diatomic gas with Cv= 52 has initial...Ch. 20 - The 2010 Nobel Prize in Physics was awarded for...Ch. 20 - Prob. 61EAPCh. 20 - Prob. 62EAPCh. 20 - 63. moles of a monatomic gas and moles of a...Ch. 20 - Prob. 64EAPCh. 20 - 65. An experiment you're designing needs a gas...Ch. 20 - 66. Consider a container like that shown in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Decades ago, it was thought that huge herbivorous dinosaurs such as Apatosaurus and Brachiosaurus habitually walked on the bottom of lakes, extending their long necks up to the surface to breathe. Brarhiosaurus had its nostrils on the top of its head. In 1977, Knut Schmidt-Nielsen pointed out that breathing would be too much work for such a creature. For a simple model, consider a sample consisting of 10.0 L of air at absolute pressure 2.00 atm, with density 2.40 kg/m3, located at the surface of a freshwater lake. Find the work required to transport it to a depth of 10.3 m, with its temperature, volume, and pressure remaining constant. This energy investment is greater than the energy that can be obtained by metabolism of food with the oxygen in that quantity of air.arrow_forwardAn argon-40 atom has a mass of 6.64 ✕ 10−26 kg. (a) What temperature (in K) would a gas composed entirely of argon-40 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from Earth, 1.12 ✕ 104 m/s? (b) What temperature (in K) would a gas composed entirely of argon-40 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from the Moon, 2.37 ✕ 103 m/s?arrow_forward1. A manager has a nominal €5,000,000 of bonds A, with a modified duration of 6% and which is negotiate at a price of 70%. Said manager is thinking of selling bonds A and buy bonds B, the latter have a price of 85% and a modified duration of 3.5%. a) What is the sensitivity of the price of bond A to a variation of 100 bp in the IRR of the bond? b) And what about bond b?arrow_forward
- An argon-40 atom has a mass of 6.64 ✕ 10−26 kg. (a) What temperature (in K) would a gas composed entirely of argon-40 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from Earth, 1.12 ✕ 104 m/s? K (b) What temperature (in K) would a gas composed entirely of argon-40 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from the Moon, 2.37 ✕ 103 m/s? Karrow_forwardTen particles are moving with the following speeds: four at 200 m/s, two at 500 m/s, and four at 600 m/s. Calculate their (a) average and (b) rms speeds. (c) Is vrms > vavg?arrow_forwardA 5 L tank contains Argon gas at 55°C and 4.5 atm. Find the total translational kinetic energy of all the Argon atoms in the tank. 1 atm = 1.013 x 10^5 Pa 1 L = 10^-3 m^3 R= 8.314 J/K-mol Molar mass of Argon= 40 Kb=1.38 x 10 ^-23 J/Karrow_forward
- A research group recently made an interesting discovery, while studying laser interactions with molecular gases. They found that nitrous oxide molecules (mass 44.013 g per mole) can reach temperatures exceeding 1,648 degrees Celsius after a interacting with a few closely-spaced (in time) laser pulses. At this temperature, what is the rms speed (in m/s) of a nitrous oxide molecule?arrow_forwardα = alpha A possible equation of state for a gas takes the formPV = RT * exp (-α / VRT)in which α and R are constants. Calculate expressions for(∂P/∂V)T, (∂V/∂T)P, (∂T/∂P)V,and show that their product is −1.arrow_forwardTwo gases in a mixture pass through a filter at rates proportional to the gases’ rms speeds. (a) Find the ratio of speeds for the two isotopes of chlorine, 35Cl and 37Cl, as they pass through the air. (b) Which isotope moves faster?arrow_forward
- There are two important isotopes of uranium, 235 U and 238 U ; these isotopes are nearly identical chemically but have different atomic masses. Only 235 U is very useful in nuclear reactors. Separating the isotopes is called uranium enrichment (and is often in the news as of this writing, because of concerns that some countries are enriching uranium with the goal of making nuclear weapons.) One of the techniques for enrichment, gas diffusion, is based on the different molecular speeds of uranium hexafluoride gas, UF6 . (a) The molar masses of 235 U and 238 UF6 are 349.0 g/mol and 352.0 g/mol, respectively. What is the ratio of their typical speeds vrms ? (b) At what temperature would their typical speeds differ by1.00 m/s? (c) Do your answers in this problem imply that this technique may be difficult?arrow_forwardA)An ideal gas is confined to a container at a temperature of 330 K.What is the average kinetic energy of an atom of the gas? (Express your answer to two significant figures.) B)2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg.Calculate vrmsvrms. (Express your answer to three significant figures.) C)A gold (coefficient of linear expansion α=14×10−6K−1α=14×10−6K−1 ) pin is exactly 4.00 cm long when its temperature is 180∘∘C. Find the decrease in long of the pin when it cools to 28.0∘∘C? (Express your answer to two significant figures.)arrow_forwardAt what temperature would the rms speed of hydrogen atoms equal the following speeds? (Note: The mass of a hydrogen atom is 1.66 x 10-27 kg.) (a) the escape speed from Earth, 1.12 x 104 m/s K (b) the escape speed from the Moon, 2.37 x 10³ m/s Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY