
Concept explainers
Interpretation:
The power output generated at different times due to the decay of
Concept introduction:
The amount of a particular radioactive isotope left after time t is given as:
Here,
is the rate constant for the radioactive decay,
Nearly all radioactive decays are of first order and the rate constant is given as:
Here,
is the half-life of the radioactive substance.
The rate of decay for a particular isotope is given by the rate law as:
Here,
is the rate constant for the radioactive decay and

Answer to Problem 3SEPP
Correct answer: Option (d).
Explanation of Solution
Given information: Initial mass of
Energy of the alpha particle per decay
J
At first, calculate the number of
of sample.
It is known that one mol of any substance is equivalent to its molar mass.
Thus, the conversion factor for
Moreover, it is also known that one mol of any substance is equivalent to Avogadro’s number.
Thus, the conversion factor for
Also, one gram is equivalent to
Thus, the conversion factor is
Hence, by using the conversion factor, the number of atoms of
present in
Thus, the initial number of atoms in one milligram of
is
Now, from the result of SEPP question 2, it is clear that one atom of
decays to give one alpha particle.
Hence,
of
decay to give
Now, the activity of
Substitute the value of rate constant from the result of SEPP question 1 to get:
The energy of the alpha particles is as follows:
It is known that one watt is equivalent to
Thus, the conversion factor is
The conversion of energy is as follows:
Thus, the power dissipated at
Similarly, the power dissipated at
At first, convert the given time into seconds as follows:
The relation between days and year is represented below.
Thus, the conversion factor is
Similarly,
Thus, the conversion factor is
Also,
Thus, the conversion factor is
Now, convert the given time in seconds as follows:
The number of atoms of
decaying in ten years can be calculated as follows:
Here,
Substitute the values of
The activity of
Substitute
The energy of the alpha particles is calculated as follows:
It is known that one watt is equivalent to
milliwatts.
Thus, the conversion factor is
Energy is converted as follows:
Thus, the power dissipated at
Hence, option (d) is correct.
Reasons for the incorrect option:
Option (a) is incorrect because the power dissipated at
Option (b) is incorrect because the power dissipated at
Option (c) is incorrect because the power dissipated at
Hence, options (a), (b), and (c) are incorrect.
Want to see more full solutions like this?
Chapter 20 Solutions
CHEMISTRY >CUSTOM<
- Draw the major organic substitution product or products for (2R,3S)-2-bromo-3-methylpentane reacting with the given nucleophile. Clearly drawn the stereochemistry, including a wedged bond, a dashed bond and two in-plane bonds at each stereogenic center. Omit any byproducts. Bri CH3CH2O- (conc.) Draw the major organic product or products.arrow_forwardTartaric acid (C4H6O6) is a diprotic weak acid. A sample of 875 mg tartaric acid are dissolved in 100 mL water and titrated with 0.994 M NaOH. How many mL of NaOH are needed to reach the first equivalence point? How many mL of NaOH are needed to reach the second equivalence point?arrow_forwardIncluding activity, calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.arrow_forward
- Order the following series of compounds from highest to lowest reactivity to electrophilic aromatic substitution, explaining your answer: 2-nitrophenol, p-Toluidine, N-(4-methylphenyl)acetamide, 4-methylbenzonitrile, 4-(trifluoromethyl)benzonitrile.arrow_forwardOrdene la siguiente serie de compuestos de mayor a menor reactividad a la sustitución aromática electrofílica, explicando su respuesta: ácido bencenosulfónico, fluorobenceno, etilbenceno, clorobenceno, terc-butilbenceno, acetofenona.arrow_forwardCan I please get all final concentrations please!arrow_forward
- State the detailed mechanism of the reaction of benzene with isopropanol in sulfuric acid.arrow_forwardDo not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction. For the decomposition reaction of N2O5(g): 2 N2O5(g) · 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 -> NO2 + NO3_(K1) NO2 + NO3 →> N2O5 (k-1) → NO2 + NO3 → NO2 + O2 + NO (K2) NO + N2O5 → NO2 + NO2 + NO2 (K3) Give the expression for the acceptable rate. (A). d[N₂O] dt = -1 2k,k₂[N205] k₁+k₂ d[N₂O5] (B). dt =-k₁[N₂O₂] + k₁[NO2][NO3] - k₂[NO2]³ (C). d[N₂O] dt =-k₁[N₂O] + k₁[N205] - K3 [NO] [N205] (D). d[N2O5] =-k₁[NO] - K3[NO] [N₂05] dtarrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 20.0 mL of the base solution, what is the pH of the resulting solution?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




