bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20, Problem 39AP

(a)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 .

(a)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 is 1.09×103 .

Explanation of Solution

Given information:Value of average speed is vmp50.0 .

Write the expression for the Maxwell-Boltzmann speed distribution function,

Nv=4πN(m02πkBT)32v2e(m0v22kBT) (1)

Here,

Nv is the Maxwell-Boltzmann speed distribution function.

N is the total number of molecules of gas.

T is the absolute temperature of gas.

v is the speed of the fraction of molecules of gas.

kB is the Boltzmann constant.

m0 is the mass of the gas molecule.

Write the expression for the average speed of a gas molecule.

v=8kBTπm0

Here,

v is the average speed of a gas molecule.

Write the expression for the most probable speed of a gas molecule.

vmp=2kBTm0

Here,

vmp is the most probable speed of a gas molecule.

Formula to calculate the numerical value of the Nv(v)Nv(vmp) using equation(1).

Nv(v)Nv(vmp)=4πN(m02πkBT)32v2e(m0v22kBT)4πN(m02πkBT)32vmp2e(m0vmp22kBT)=(vvmp)2e(m0vmp22kBTm0v22kBT)=(vvmp)2em0vmp22kBT(1(vvmp)2) (2)

Substitute 2kBTm0 for vmp in equation (2) to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vvmp)2em0(2kBTm0)22kBT(1(vvmp)2)=(vvmp)2e(1(vvmp)2) (3)

Substitute vmp50.0 for v in equation (3) to find Nv(v)Nv(vmp) ,

Nv(v)Nv(vmp)=(vmp50.0vmp)2e(1(vmp50.0vmp)2)=1.0868×1031.09×103

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 is 1.09×103 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 is 1.09×103 .

(b)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 .

(b)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 is 2.69×102 .

Explanation of Solution

Given information: Value of average speed is vmp10.0 .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute vmp10.0 for v in above expression to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vmp10.0vmp)2e(1(vmp10.0vmp)2)=2.69×102

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 is 2.69×102 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 is 2.69×102 .

(c)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 .

(c)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 is 0.529 .

Explanation of Solution

Given information: Value of average speed is vmp2.00 .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute vmp2.00 for v in equation (3) to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vmp2.00vmp)2e(1(vmp2.00vmp)2)=0.529

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 is 0.529 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 is 0.529 .

(d)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp .

(d)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp is 1.00 .

Explanation of Solution

Given information: Value of average speed is vmp .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute vmp for v in above expression to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(vmpvmp)2e(1(vmpvmp)2)=1.00

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp is 1.00 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp is 1.00 .

(e)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp .

(e)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp is 0.199 .

Explanation of Solution

Given information: Value of average speed is 2.00vmp .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute 2.00vmp for v in above expression to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(2.00vmpvmp)2e(1(2.00vmpvmp)2)=0.199

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp is 0.199 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp is 0.199 .

(f)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp .

(f)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp is 1.01×1041 .

Explanation of Solution

Given information: Value of average speed is 10.0vmp .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute 10.0vmp for v in above expression to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(10.0vmpvmp)2e(1(10.0vmpvmp)2)=1.01×1041

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp is 1.01×1041 .

Conclusion:

Therefore, thenumerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp is 1.01×1041 .

(g)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp .

(g)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp is 1.25×101082

Explanation of Solution

Given information: Value of average speed is 50.0vmp .

From equation (3), formula to calculate the numerical value of the Nv(v)Nv(vmp) is,

Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Substitute 50.0vmp for v in above equation to find Nv(v)Nv(vmp) .

Nv(v)Nv(vmp)=(50.0vmpvmp)2e(1(50.0vmpvmp)2)=1.25×101082

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp is 1.25×101082 .

Conclusion:

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp is 1.25×101082 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. Two pendula of slightly different length oscillate next to each other. The short one oscillates with frequency 0.52 Hz and the longer one with frequency 0.50 Hz. If they start of in phase determine their phase difference after 75 s.
A mass is connect to a vertical revolving axle by two strings of length L, each making an angle of 45 degrees with the axle, as shown. Both the axle and mass are revolving with angular velocity w, Gravity is directed downward. The tension in the upper string is T_upper and the tension in the lower string is T_lower.Draw a clear free body diagram for mass m. Please include real forces only.Find the tensions in the upper and lower strings, T_upper and T_lower
2. A stone is dropped into a pool of water causing ripple to spread out. After 10 s the circumference of the ripple is 20 m. Calculate the velocity of the wave.

Chapter 20 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY