
Concept explainers
(a)
Interpretation: The formulas of the given complex compounds are to be stated.
Concept introduction: Rules followed in the naming of coordination compound:
- Greek prefix is used to express the number of ligands.
- Roman numeral is used to denote the oxidation state of metal ion.
- In case of more than one type of ligand present in a compound, they are named alphabetically.
- The suffix ‘-ate’ is added to metal ion if complex ion contains negative charge. Latin names are also used to identify the name of metals.
- If counter ions are present in complex compound, then cation is named first which is the name of element, whereas anion is named last which is the name of salt.
To determine: The formula of the complex compound potassium tetrachlorocobaltate(II).
(b)
Interpretation: The formulas of the given complex compounds are to be stated.
Concept introduction: Rules followed in the naming of coordination compound:
- Greek prefix is used to express the number of ligands.
- Roman numeral is used to denote the oxidation state of metal ion.
- In case of more than one type of ligand present in a compound, they are named alphabetically.
- The suffix ‘-ate’ is added to metal ion if complex ion contains negative charge. Latin names are also used to identify the name of metals.
- If counter ions are present in complex compound, then cation is named first which is the name of element, whereas anion is named last which is the name of salt.
To determine: The formula of the complex compound aquatricarbonylplatinum(II) bromide.
(c)
Interpretation: The formulas of the given complex compounds are to be stated.
Concept introduction: Rules followed in the naming of coordination compound:
- Greek prefix is used to express the number of ligands.
- Roman numeral is used to denote the oxidation state of metal ion.
- In case of more than one type of ligand present in a compound, they are named alphabetically.
- The suffix ‘-ate’ is added to metal ion if complex ion contains negative charge. Latin names are also used to identify the name of metals.
- If counter ions are present in complex compound, then cation is named first which is the name of element, whereas anion is named last which is the name of salt.
To determine: The formula of the complex compound sodium dicyanobis(oxalato)ferrate(III).
(d)
Interpretation: The formulas of the given complex compounds are to be stated.
Concept introduction: Rules followed in the naming of coordination compound:
- Greek prefix is used to express the number of ligands.
- Roman numeral is used to denote the oxidation state of metal ion.
- In case of more than one type of ligand present in a compound, they are named alphabetically.
- The suffix ‘-ate’ is added to metal ion if complex ion contains negative charge. Latin names are also used to identify the name of metals.
- If counter ions are present in complex compound, then cation is named first which is the name of element, whereas anion is named last which is the name of salt.
To determine: The formula of the complex compound triamminechloroethylenediaminechromium(III) iodide

Trending nowThis is a popular solution!

Chapter 20 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardWhat is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forwardLook at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax





