Beryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20°C to 26ºC (b) raising the temperature of 2 kg of H2O from 20ºC to 23°C (c) raising the temperature of 2 kg of H2O from 1ºC to 4°C (d) raising the temperature of 2 kg of beryllium from — 1°C to 2°C (e) raising the temperature of 2 kg of H2O from -1°C to 2°C
The rank from the largest to smallest according to the required energy input.
Answer to Problem 20.8OQ
The rank from the largest to smallest according to the required energy input is
Explanation of Solution
Given info: The specific heat of the Beryllium is one half of the specific heat of the water.
Write the expression to relate the specific heat of the Beryllium to the specific heat of the water.
Here,
The specific heat of water is
Substitute
Thus, the specific heat of the Beryllium is
The change in the temperature is calculated as,
Here,
The amount of energy required for the rise in temperature of water is,
Here,
Substitute
For case (a),
The mass of
Substitute
Thus, the energy required in case (a) is
For case (b),
The mass of
Substitute
Thus, the energy required in case (b) is
For case (c),
The mass of
Substitute
Thus, the energy required in case (c) is
For case (d),
The mass of beryllium is
Substitute
Thus, the energy required in case (d) is
For case (e),
The mass of
For the temperature in negative
Substitute
From temperature
Here,
The latent heat of fusion of ice is
Substitute
From
Substitute
The total energy required in case (e) is,
Substitute
Thus, the energy required in case (e) is
Conclusion:
Therefore, the rank from the largest to smallest according to the required energy input is
Want to see more full solutions like this?
Chapter 20 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvotearrow_forward1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward
- 3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forwardCan someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forward
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning