Chemistry: Atoms First
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 20.67QP

(a)

Interpretation Introduction

Interpretation:  For the given nuclear reaction, X should be identified and the equation should be balanced.

Concept Introduction:

  • Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.

Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.

7N15(p,α)6C12Parentnucleus(Projectile,ejectile)Daughternucleus

  • On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal.

To find: The value of X in the given nuclear equation (a).

X=23He

(a)

Expert Solution
Check Mark

Answer to Problem 20.67QP

H13 23He+β-1 0                        X=23He

Explanation of Solution

Explanation

Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses. Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively. So for any nuclear reaction, short hand notation will be in this form that is, Parentnucleus(Projectile,ejectile)Daughternucleus

For the given reaction,

Chemistry: Atoms First, Chapter 20, Problem 20.67QP

The given chemical equation can be written as,

H13  X -1 0

On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal. So the X will be 23X . By analyzing the X, atomic number of X is 3 and the atomic mass is 2. So it is found that X=23He .

So the balanced equation can be written as,

H13 23He+β-1 0

(b)

Interpretation Introduction

Interpretation:  For the given nuclear reaction, X should be identified and the equation should be balanced.

Concept Introduction:

  • Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.

Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.

7N15(p,α)6C12Parentnucleus(Projectile,ejectile)Daughternucleus

  • On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal.

To find: The value of X in the given nuclear equation (b).

X=U92238

(b)

Expert Solution
Check Mark

Answer to Problem 20.67QP

Pu94242α24+U92238                      X=U92238

Explanation of Solution

Explanation

For the given reaction b,

Parentnucleus-P94242Daughternucleus-XEjectile-α

The given chemical equation can be written as,

Pu94242α24+ X

On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal. So the X will be 92238X . By analyzing the X, atomic number of X is 92 and the atomic mass is 238. So it should be the isotope of Uranium-238. It is found that X=U92238 .

 So the balanced equation can be written as,

. Pu94242α24+U92238

(c)

Interpretation Introduction

Interpretation:  For the given nuclear reaction, X should be identified and the equation should be balanced.

Concept Introduction:

  • Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.

Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.

7N15(p,α)6C12Parentnucleus(Projectile,ejectile)Daughternucleus

  • On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal.

To find: The value of X in the given nuclear equation (c).

X=Xe54131

(c)

Expert Solution
Check Mark

Answer to Problem 20.67QP

I53131Xe54131-1 0                       X=Xe54131

Explanation of Solution

Explanation

For the given reactions,

Parentnucleus-I53131Daughternucleus-XEjectile-β

The given chemical equation can be written as,

I53131 X -1 0 

On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal. So X will be 57146X . By analyzing the X, atomic number of X is57 and the atomic mass is 146. So it should be the isotope of Xe. It is found that X=La57146_

 So the balanced equation can be written as,

. I53131Xe54131-1 0

(d)

Interpretation Introduction

Interpretation:  For the given nuclear reaction, X should be identified and the equation should be balanced.

Concept Introduction:

  • Nuclear reaction can be written in the shorthand notation with the parentheses. Bombarding particle, that is projectile can be represented as first symbol in the parentheses and the emitted particle that is ejectile which can be represented as the second particle in the parentheses.

Parent nucleus and daughter nucleus can be represented in the front part of the parentheses and back part of the parentheses respectively.

7N15(p,α)6C12Parentnucleus(Projectile,ejectile)Daughternucleus

  • On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal.

To find: The value of X in the given nuclear equation (d).

X=Cm96247

(d)

Expert Solution
Check Mark

Answer to Problem 20.67QP

Cf98251Cm9624724                  X=Cm96247

Explanation of Solution

Explanation

For the given reactions, Shorthand notation is U92235(n,n)X . From the notation it is clear that,

Parentnucleus-U92235Daughternucleus-XEjectile-α

The given chemical equation can be written as,

Cf98251 X 24 

On accordance with law of conservation of mass, for any chemical reaction, total masses of reactants and products must be equal. So X will be 97247X . By analyzing the X, atomic number of X is97 and the atomic mass is 247. So it should be the isotope of Cm. It is found that X=4n01_

 So the balanced equation can be written as,

Cf98251Cm9624724 

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Five chemistry project topic that does not involve practical
Please correct answer and don't used hand raiting
Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol‍¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.

Chapter 20 Solutions

Chemistry: Atoms First

Ch. 20.2 - Prob. 20.2.2SRCh. 20.2 - What is the change in mass (in ka) for the...Ch. 20.3 - Prob. 20.3WECh. 20.3 - Prob. 3PPACh. 20.3 - Prob. 3PPBCh. 20.3 - Prob. 20.4WECh. 20.3 - Prob. 4PPACh. 20.3 - Prob. 20.3.1SRCh. 20.3 - Prob. 20.3.2SRCh. 20.4 - Prob. 20.5WECh. 20.4 - Prob. 5PPACh. 20.4 - Prob. 5PPBCh. 20.4 - Prob. 5PPCCh. 20.4 - Prob. 20.4.1SRCh. 20.4 - Prob. 20.4.2SRCh. 20 - Prob. 20.1QPCh. 20 - Prob. 20.2QPCh. 20 - Prob. 20.3QPCh. 20 - Prob. 20.4QPCh. 20 - Prob. 20.5QPCh. 20 - Prob. 20.6QPCh. 20 - Prob. 20.7QPCh. 20 - Prob. 20.8QPCh. 20 - Prob. 20.9QPCh. 20 - Prob. 20.10QPCh. 20 - Prob. 20.11QPCh. 20 - Prob. 20.12QPCh. 20 - Prob. 20.13QPCh. 20 - Prob. 20.14QPCh. 20 - Prob. 20.15QPCh. 20 - Prob. 20.16QPCh. 20 - Prob. 20.17QPCh. 20 - Prob. 20.18QPCh. 20 - Prob. 20.19QPCh. 20 - Prob. 20.20QPCh. 20 - Prob. 20.21QPCh. 20 - Prob. 20.22QPCh. 20 - Prob. 20.23QPCh. 20 - Prob. 20.24QPCh. 20 - Prob. 20.25QPCh. 20 - Prob. 20.26QPCh. 20 - Prob. 20.27QPCh. 20 - Prob. 20.28QPCh. 20 - Prob. 20.29QPCh. 20 - Prob. 20.30QPCh. 20 - Prob. 20.31QPCh. 20 - Prob. 20.32QPCh. 20 - Prob. 20.33QPCh. 20 - Prob. 20.34QPCh. 20 - Prob. 20.35QPCh. 20 - Prob. 20.36QPCh. 20 - Prob. 20.37QPCh. 20 - Prob. 20.38QPCh. 20 - Prob. 20.39QPCh. 20 - Prob. 20.1VCCh. 20 - Prob. 20.3VCCh. 20 - Prob. 20.4VCCh. 20 - Prob. 20.40QPCh. 20 - Prob. 20.41QPCh. 20 - Prob. 20.42QPCh. 20 - Prob. 20.43QPCh. 20 - Prob. 20.44QPCh. 20 - Prob. 20.45QPCh. 20 - Prob. 20.46QPCh. 20 - Prob. 20.47QPCh. 20 - Prob. 20.48QPCh. 20 - Prob. 20.49QPCh. 20 - Prob. 20.50QPCh. 20 - Prob. 20.51QPCh. 20 - Prob. 20.52QPCh. 20 - Prob. 20.53QPCh. 20 - Prob. 20.54QPCh. 20 - Prob. 20.55QPCh. 20 - Prob. 20.56QPCh. 20 - Prob. 20.57QPCh. 20 - Prob. 20.58QPCh. 20 - Prob. 20.59QPCh. 20 - Prob. 20.60QPCh. 20 - Prob. 20.61QPCh. 20 - Prob. 20.62QPCh. 20 - Prob. 20.63QPCh. 20 - Prob. 20.64QPCh. 20 - Prob. 20.65QPCh. 20 - Prob. 20.66QPCh. 20 - Prob. 20.67QPCh. 20 - Prob. 20.68QPCh. 20 - Prob. 20.69QPCh. 20 - Prob. 20.70QPCh. 20 - Prob. 20.71QPCh. 20 - Prob. 20.72QPCh. 20 - Prob. 20.73QPCh. 20 - Prob. 20.74QPCh. 20 - Prob. 20.75QPCh. 20 - Prob. 20.76QPCh. 20 - Prob. 20.77QPCh. 20 - Prob. 20.78QPCh. 20 - Prob. 20.79QPCh. 20 - Prob. 20.80QPCh. 20 - Prob. 20.81QPCh. 20 - Prob. 20.82QPCh. 20 - Prob. 20.83QPCh. 20 - Prob. 20.84QPCh. 20 - Prob. 20.85QPCh. 20 - Prob. 20.86QPCh. 20 - Prob. 20.87QPCh. 20 - Prob. 20.88QPCh. 20 - Prob. 20.89QPCh. 20 - Prob. 20.90QPCh. 20 - Prob. 20.91QPCh. 20 - Prob. 20.92QPCh. 20 - Prob. 20.93QPCh. 20 - Prob. 20.94QPCh. 20 - Prob. 20.95QPCh. 20 - Prob. 20.96QPCh. 20 - Prob. 20.97QPCh. 20 - Prob. 20.98QPCh. 20 - Prob. 20.99QPCh. 20 - Prob. 20.100QPCh. 20 - Prob. 20.101QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning