University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
bartleby

Videos

Textbook Question
Book Icon
Chapter 20, Problem 20.61PP

POWER FROM THE SEA.

Ocean thermal energy conversion is a process that uses the temperature difference between the warm surface water of tropical oceans and the cold deep-ocean water to run a heat engine. The graph shows a typical decrease of temperature with depth below the surface in tropical oceans. In the heat engine, the warmer surface water vaporizes a low-boiling-point fluid, such as ammonia. The heat of vaporization of ammonia is 260 cal/g at 27°C, the surface-water temperature. The vapor is used to turn a turbine and is then condensed back into a liquid by means of cold water brought from deep below the surface through a large intake pipe. A power plant producing 10 MW of useful power would require a cold seawater flow rate of about 30,000 kg/s.

Chapter 20, Problem 20.61PP, POWER FROM THE SEA. Ocean thermal energy conversion is a process that uses the temperature

20.61    Compare the entropy change of the warmer water to that of the colder water during one cycle of the heat engine, assuming an ideal Carnot cycle. (a) The entropy does not changc during one cycle in either case. (b) The entropy of both increases, but the entropy of the colder water increases by more because its initial temperature is lower. (c) The entropy of the warmer water decreases by more than the entropy of the colder water increases, because some of the heat removed from the warmer water goes to the work done by the engine. (d) The entropy of the warmer water decreases by the same amount that the entropy of the colder water increases.

Blurred answer
Students have asked these similar questions
The rate at which a resting person converts food energy is called one’s basal metabolic rate (BMR). Assume that the resulting internal energy leaves a person’s body by radiation and convection of dry air. When you jog, most of the food energy you burn above your BMR becomes internalenergy that would raise your body temperature if it were not eliminated. Assume that evaporation of perspiration is the mechanism for eliminating this energy. Suppose a person is jogging for “maximum fat burning,” converting food energy at the rate 400 kcal/h above his BMR, and putting out energy by work at the rate 60.0 W. Assume that the heat of evaporation of water at body temperature is equal to its heat of vaporization at 100°C. (a) Determine the hourly rate at which water must evaporate from his skin. (b) When you metabolize fat, the hydrogen atoms in the fat molecule are transferred to oxygen to form water. Assume that metabolism of 1.00 g of fat generates 9.00 kcal of energy and produces 1.00 g of…
An ideal gas with an initial temperature of 300 K is isobarically cooled at a pressure of 25 Pa. Its volume decreases from 3.0 m3 to 1.8 m3. During this process, the gas gives up 75 J of heat. How does the internal energy of the gas change? What will be the final temperature of the gas?
During a chemistry lab, you take a 0.4 kg sample of ice and put it in a beaker with a thermometer. You then place the beaker with the ice on 0 the temperature of the ice is -18 = a hot plate, and turn on the hot plate. This hot plate adds heat to the ice at a rate of 330 W. At time t °C. Because of the large heat capacity of water and ice, you may assume in this problem that all the heat goes into the sample of ice, and that we can ignore the amount of heat going into the beaker and thermometer. Also assume no heat escapes from the system. Some useful values: ● Specific heat of water: C = Specific heat of ice: Ci = 2100 J/kg K • Latent heat of fusion: L = 334 000 J/kg ● 4200 J/kg K = 1a) At what time does the ice reach a temperature of -3.5°C? answer= units? 1b) At what time has all the ice melted? answer= units? Check your answer Check your answer 1c) After the ice has completely melted, we're left with 0.4 kg of water. Check your answer answer= units? not yet solved not yet solved…

Chapter 20 Solutions

University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)

Ch. 20 - Prob. 20.3DQCh. 20 - Prob. 20.4DQCh. 20 - Why must a room air conditioner be placed in a...Ch. 20 - Prob. 20.6DQCh. 20 - Prob. 20.7DQCh. 20 - An electric motor has its shaft coupled to that of...Ch. 20 - When a wet cloth is hung up in a hot wind in the...Ch. 20 - Compare the pV-diagram for the Otto cycle in Fig....Ch. 20 - The efficiency of heat engines is high when the...Ch. 20 - What would be the efficiency of a Carnot engine...Ch. 20 - Real heat engines, like the gasoline engine in a...Ch. 20 - Does a refrigerator full of food consume more...Ch. 20 - In Example 20.4, a Carnot refrigerator requires a...Ch. 20 - How can the thermal conduction of heat from a hot...Ch. 20 - Explain why each of the following processes is an...Ch. 20 - The free expansion of an ideal gas is an adiabatic...Ch. 20 - Are the earth and sun in thermal equilibrium? Are...Ch. 20 - Prob. 20.20DQCh. 20 - Prob. 20.21DQCh. 20 - Prob. 20.22DQCh. 20 - BIO A growing plant creates a highly complex and...Ch. 20 - A diesel engine performs 2200 J of mechanical work...Ch. 20 - An aircraft engine takes in 9000 J of heat and...Ch. 20 - A Gasoline Engine. A gasoline engine takes in 1.61...Ch. 20 - A gasoline engine has a power output of 180 kW...Ch. 20 - The pV-diagram in Fig. E20.5 shows a cycle of heat...Ch. 20 - (a) Calculate the theoretical efficiency for an...Ch. 20 - The Otto-cycle engine in a Mercedes-Benz SL1 a...Ch. 20 - Section 20.4 Refrigerators 20.8The coefficient of...Ch. 20 - A refrigerator has a coefficient of performance of...Ch. 20 - A freezer has a coefficient of performance of...Ch. 20 - A refrigerator has a coefficient of performance of...Ch. 20 - A Carnot engine is operated between two heat...Ch. 20 - A Carnot engine whose high-temperature reservoir...Ch. 20 - An ice-making machine operates in a Carnot cycle....Ch. 20 - A Carnot engine has an efficiency of 66% and...Ch. 20 - A certain brand of freezer is advertised to use...Ch. 20 - A Carnot refrigerator is operated between two heat...Ch. 20 - A Carnot heat engine uses a hot reservoir...Ch. 20 - You design an engine that takes in 1.50 104 J of...Ch. 20 - A 4.50-kg block of ice at 0.00C falls into the...Ch. 20 - A sophomore with nothing better to do adds heat to...Ch. 20 - CALC You decide to take a nice hot bath but...Ch. 20 - A 15.0-kg block of ice at 0.0C melts to liquid...Ch. 20 - CALC You make tea with 0.250 kg of 85.0C water and...Ch. 20 - Three moles of an ideal gas undergo a reversible...Ch. 20 - What is the change in entropy of 0.130 kg of...Ch. 20 - (a) Calculate the change in entropy when 1.00 kg...Ch. 20 - Entropy Change Due to Driving. Premium gasoline...Ch. 20 - CALC Two moles of an ideal gas occupy a volume V....Ch. 20 - A box is separated by a partition into two parts...Ch. 20 - CALC A lonely party balloon with a volume of 2.40...Ch. 20 - You are designing a Carnot engine that has 2 mol...Ch. 20 - CP An ideal Carnot engine operates between 500C...Ch. 20 - Prob. 20.34PCh. 20 - CP A certain heat engine operating on a Carnot...Ch. 20 - A heat engine takes 0.350 mol of a diatomic ideal...Ch. 20 - Prob. 20.37PCh. 20 - What is the thermal efficiency of an engine that...Ch. 20 - CALC You build a heal engine that takes 1.00 mol...Ch. 20 - CP As a budding mechanical engineer, you are...Ch. 20 - CALC A heal engine Operates using the cycle shown...Ch. 20 - CP BIO Humun Entropy. A person who has skin of...Ch. 20 - An experimental power plant at the Natural Energy...Ch. 20 - CP BIO A Human Engine. You decide to use your body...Ch. 20 - CALC A cylinder contains oxygen at a pressure of...Ch. 20 - A monatomic ideal gas it taken around the cycle...Ch. 20 - A Carnot engine operates between two heat...Ch. 20 - A typical coal-fired power plant generates 1000 MW...Ch. 20 - Automotive Thermodynamics. A Volkswagen Passat has...Ch. 20 - An air conditioner operates on 800 W of power and...Ch. 20 - The pV-diagram in Fig. P20.51 shows the cycle for...Ch. 20 - BIO Human Entropy. A person with skin of surface...Ch. 20 - CALC An object of mass m1, specific heat c1, and...Ch. 20 - CALC To heat 1 cup of water (250 cm3) to make...Ch. 20 - DATA In your summer job with a venture capital...Ch. 20 - DATA For a refrigerator or air conditioner, the...Ch. 20 - DATA You are conducting experiments to study...Ch. 20 - Consider a Diesel cycle that starts (at point a in...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY