(a)
Interpretation:
The fraction of Sr-90 remains after three half-lives needs to be determined, if the half-life of Sr-90 is 29 years.
Concept introduction:
The nuclear reactions are a type of chemical processes which lead to the formation of some new nuclei with the emission of certain particles. Usually alpha or beta particles, or gamma rays are emitted as a side product with some new daughter nuclei. The nuclei which shows spontaneous decay with time are called as radioactive nuclei. The radioactive decay follows the first order kinetic and the half-life is inversely proportional to the decay constant of the radioactive decay.
(b)
Interpretation:
Thevalue of decay constant needs to be determined, if the half-life of Sr-90 is 29 years.
Concept introduction:
The nuclear reactions are a type of chemical processes which lead to the formation of some new nuclei with the emission of certain particles. Usually alpha or beta particles, or gamma rays are emitted as a side product with some new daughter nuclei. The nuclei which shows spontaneous decay with time are called as radioactive nuclei. The radioactive decay follows the first order kinetic and the half-life is inversely proportional to the decay constant of the radioactive decay.
(c)
Interpretation:
The years required for 99% of the Sr-90 to disappear needs to be determined.
Concept introduction:
The nuclear reactions are a type of chemical processes which lead to the formation of some new nuclei with the emission of certain particles. Usually alpha or beta particles, or gamma rays are emitted as a side product with some new daughter nuclei. The nuclei which shows spontaneous decay with time are called as radioactive nuclei. The radioactive decay follows the first order kinetic and the half-life is inversely proportional to the decay constant of the radioactive decay.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
- starting reactant IV target + enantiomer 1) BH3, THF 2) H₂O2, NaOH, H₂O 1) Hg(OAc)2, THF, H₂O (or ROH) 2) NaBH4 D2, Pt/C H₂, Pt/C D2, Lindlar catalyst or Ni₂B H₂, Lindlar catalyst or Ni₂B NaNH, OH/H₂O or SH/H₂S H₂O/H₂O 1) 03 2) H₂O 1) 03 2) (CH3)2S HBr, w/ROOR HBr, (cold, dark, no ROOR) Naº, NH3(e) NBS (trace Br2), light HgSO4, H2SO4, H₂O Naº, ROH 1) Sia₂BH, THF 2) H2O2, NaOH, H₂O H3O/ROH or H₂O*/RSH OR/ROH or SR/RSH 1) OsO4, NMO 2) NaHSO3, H₂O 1) MCPBA (peroxy acid) 2) H3O, H2O (or ROH or RSH) KMnO4 (warm, concentrated) Br₂/H₂O Br₂, heat or light Br2, cold, dark, no peroxides (CH3)3CO(CH3)3COH ROH or RSH H₂O KMnO4/OH (cold, dilute)arrow_forwardNonearrow_forwardIndicate whether the ability of atoms to associate with each other depends on electron affinity.arrow_forward
- 1) Write the reduction half reactions and find the reduction potential for each pair.a. Zn/Zn2+b. Cu/Cu2+c. Al/Al3+d. Ag/Ag1+ 2) For each of the following voltaic cells, identify the anode, cathode, write the standard cell notation/diagram, and predict the cell potential.arrow_forwardThe following reaction is first order in NO2. Solve the differential rate equation to create the integrated rate law. NO2 (g) -> NO(g) + O (g)arrow_forwardMore information on howcwe use these skils gi function as an intelligent and compassinoate citizenarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning