LCPO CHEMISTRY W/MODIFIED MASTERING
8th Edition
ISBN: 9780135214756
Author: Robinson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 20.59SP
Interpretation Introduction
Interpretation:
The half-life of
Concept introduction:
The nuclear reactions are a type of chemical processes which lead to the formation of some new nuclei with the emission of certain particles. Usually alpha or beta particles, or gamma rays are emitted as a side product with some new daughter nuclei. The nuclei which shows spontaneous decay with time are called as radioactive nuclei. The radioactive decay follows the first order kinetic and the half-life is inversely proportional to the decay constant of the radioactive decay.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For each set of carbonyl additions, circle the carbonyl addition that occurs at the faster rate
(assuming everything is the same except that the reagent/substrate differs - i.e., same
temperature, and ratios/concentrations of reagent and substrate). Electrostatic attraction has
a greater impact on the relative rates than steric hindrance.
(a)
CH3OH
HO OCH3
H
H
CH3
i
CH₂OH
HO OCH 3
H
F3C
CH3
(b)
F3C
NaOCH3
HO OCH3
H3C
CH3
H3C CH3
CH3OH
HO OCH3
H3C
CH3
H3C CH3
(c)
NaSCH3
OSCH 3
H3C
CH3
H3C CH3
NaOCH3
O OCH 3
H3C
CH3
H3C
CH3
9.34. Assign the chemical shifts and splitting patterns to specific aspects of the structure you propose.
C5H12O
1H
2H
2
6H
ille
H(ppm)
1
3H
и
0
HO
(c) (1 pt) Both of the following are hydride donors. Circle the harder nucleophile
of
-P-Cu-H
Н
H-AI-H
HINIH
Н
(d) (4 pts) The following reaction involves two steps. Draw the anionic intermediate that
forms after sodium hydride reacts and the final organic product.
Hints: what type of nucleophile is NaH and where does that mean it will react? Also, the
second step is not a proton transfer. What's the most likely reaction for that intermediate
to undergo?
NaH
anionic intermediate
final product
Chapter 20 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
Ch. 20 - Prob. 20.1PCh. 20 - Prob. 20.2ACh. 20 - Prob. 20.3PCh. 20 - Prob. 20.4ACh. 20 - Prob. 20.5PCh. 20 - Prob. 20.6PCh. 20 - What is the half-life of iron 59 , a radioisotope...Ch. 20 - Prob. 20.8ACh. 20 - Prob. 20.9PCh. 20 - Prob. 20.10A
Ch. 20 - Prob. 20.11PCh. 20 - Prob. 20.12ACh. 20 - Prob. 20.13PCh. 20 - Prob. 20.14ACh. 20 - Prob. 20.15PCh. 20 - Prob. 20.16ACh. 20 - Prob. 20.17PCh. 20 - Prob. 20.18ACh. 20 - Prob. 20.19PCh. 20 - Prob. 20.20PCh. 20 - Prob. 20.21PCh. 20 - Prob. 20.22PCh. 20 - Prob. 20.23PCh. 20 - Prob. 20.24PCh. 20 - Prob. 20.25CPCh. 20 - Prob. 20.26SPCh. 20 - Prob. 20.27SPCh. 20 - Prob. 20.28SPCh. 20 - Prob. 20.29SPCh. 20 - Prob. 20.30SPCh. 20 - Prob. 20.31SPCh. 20 - Prob. 20.32SPCh. 20 - Prob. 20.33SPCh. 20 - Prob. 20.34SPCh. 20 - Prob. 20.35SPCh. 20 - Prob. 20.36SPCh. 20 - Prob. 20.37SPCh. 20 - Prob. 20.38SPCh. 20 - Prob. 20.39SPCh. 20 - Prob. 20.40SPCh. 20 - Prob. 20.41SPCh. 20 - Prob. 20.42SPCh. 20 - Prob. 20.43SPCh. 20 - Prob. 20.44SPCh. 20 - Prob. 20.45SPCh. 20 - Prob. 20.46SPCh. 20 - Prob. 20.47SPCh. 20 - Prob. 20.48SPCh. 20 - Prob. 20.49SPCh. 20 - The half-life of indium 111, a radioisotope used...Ch. 20 - The decay constant of plutonium 239 , a waste...Ch. 20 - Prob. 20.52SPCh. 20 - Plutonium 239 has a decay constant of 2.88105 year...Ch. 20 - Prob. 20.54SPCh. 20 - Prob. 20.55SPCh. 20 - A 1.0 mgsampleof79Sedecays initially atarate of...Ch. 20 - Prob. 20.57SPCh. 20 - A sample of 37Ar undergoes 8540...Ch. 20 - Prob. 20.59SPCh. 20 - Prob. 20.60SPCh. 20 - Prob. 20.61SPCh. 20 - Prob. 20.62SPCh. 20 - Prob. 20.63SPCh. 20 - Prob. 20.64SPCh. 20 - Prob. 20.65SPCh. 20 - Prob. 20.66SPCh. 20 - Prob. 20.67SPCh. 20 - Prob. 20.68SPCh. 20 - Prob. 20.69SPCh. 20 - Prob. 20.70SPCh. 20 - Prob. 20.71SPCh. 20 - Prob. 20.72SPCh. 20 - Prob. 20.73SPCh. 20 - Prob. 20.74SPCh. 20 - Prob. 20.75SPCh. 20 - Prob. 20.76SPCh. 20 - Prob. 20.77SPCh. 20 - Prob. 20.78SPCh. 20 - Prob. 20.79SPCh. 20 - Prob. 20.80SPCh. 20 - Prob. 20.81SPCh. 20 - Prob. 20.82SPCh. 20 - Prob. 20.83SPCh. 20 - Prob. 20.84SPCh. 20 - Prob. 20.85SPCh. 20 - Prob. 20.86SPCh. 20 - Prob. 20.87SPCh. 20 - Prob. 20.88SPCh. 20 - Prob. 20.89SPCh. 20 - Prob. 20.90SPCh. 20 - Prob. 20.91SPCh. 20 - Prob. 20.92SPCh. 20 - Prob. 20.93SPCh. 20 - Prob. 20.94SPCh. 20 - Prob. 20.95SPCh. 20 - Prob. 20.96SPCh. 20 - Prob. 20.97SPCh. 20 - Prob. 20.98SPCh. 20 - Prob. 20.99SPCh. 20 - Prob. 20.100SPCh. 20 - Prob. 20.101SPCh. 20 - Prob. 20.102SPCh. 20 - Prob. 20.103SPCh. 20 - Prob. 20.104SPCh. 20 - Prob. 20.105SPCh. 20 - Prob. 20.106SPCh. 20 - Prob. 20.107SPCh. 20 - Prob. 20.108SPCh. 20 - Prob. 20.109SPCh. 20 - Prob. 20.110SPCh. 20 - Prob. 20.111SPCh. 20 - Prob. 20.112SPCh. 20 - Prob. 20.113SPCh. 20 - Prob. 20.114MPCh. 20 - Prob. 20.115MPCh. 20 - Prob. 20.116MPCh. 20 - Prob. 20.117MPCh. 20 - Prob. 20.118MPCh. 20 - Prob. 20.119MPCh. 20 - Prob. 20.120MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 7. Our textbook says that the fragmentation that occurs in the mass spectrometry of alkanes can be understood by realizing that "the differences in energy among ... tertiary, secondary, primary and methyl carbocations in the gas phase are much greater than the differences among comparable radicals. Therefore, where alternative modes of fragmentation are possible, the more stable carbocation tends to form in preference to the more stable radical." Given this information, which one of the following hexane isomers (all C6H14) is most likely to have a strong M-15 peak (that is, a peak at m/z 71)? HINT: You're looking for a compound that forms a 3° carbocation after loss of an electron and a CH³· radical. A) n-hexane D) 2-methylpentane B) 2,2-dimethylbutane E) 3-methylpentane C) 2,3-dimethylbutanearrow_forwardPlease help graph these plots below:arrow_forwardDraw the major product formed for each reaction. Assume the reactions are irreversible. Include stereochemistry when products contain stereocenter(s). It may be helpful to first identify whether the reaction is a substitution (and SN1 or SN2), an elimination (and E1 or E2) or a carbonyl addition. (a) 1 equiv means for every molecule of substrate, there is one molecule of NaOCH3 Br Br NaOCH 3 (1 equiv) 0 °C (b) Draw only the substitution product. Both elimination and substitution occur here. (၁) CH3 Br Br CH3OH NaOCH3 80 °C (d) "Then" means CHзl is added after the Grignard reacts. H3C MgBr (1 equiv) then CH3larrow_forward
- Complete the following equation showing the compounds as an Arrhenius Base: NH4OH toarrow_forward2. The ultraviolet photoelectron spectrum of N2 exhibits three distinct ionizations, depicted below (we also discussed this spectrum in Lecture 30). The corresponding ionizations are: First ionization: lines at 15.57 and 15.83 eV Second ionization: lines at 16.69, 16.92, 17.15, 17.38, 17.61 and 17.84 eV Third ionization: lines at 18.75 and 19.07 eV Counts per second 2 3 Kinetic energy/eV 5 | 6 17 8arrow_forward1. Carbocation rearrangements For each carbocation, circle if the carbocation rearranges or doesn't rearrange. If it rearranges, draw the arrow-pushing mechanism and the resulting carbocation. (a) (circle one): rearranges or doesn't rearrange H3C H y (b) (circle one): rearranges or doesn't rearrange F3C H ୪ H (c) (circle one): rearranges or doesn't rearrange H3C CH3 (d) (circle one): rearranges or doesn't rearrange zo H3CO CH3 CH3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Photochemistry : Introduction to Basic Theory of Photochemical Process [Part 1]; Author: Dr. Vikrant Palekar;https://www.youtube.com/watch?v=2NDOL11d6no;License: Standard YouTube License, CC-BY
Photochemistry-1; Author: CH-08:ARYABHATT [Mathematics, Physics, Chemistry];https://www.youtube.com/watch?v=DC4J0t1z3e8;License: Standard Youtube License