University Physics (14th Edition)
University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 20, Problem 20.56P

DATA For a refrigerator or air conditioner, the coefficient of performance K (often denoted as COP) is, as in Eq. (20.9), the ratio of cooling output |QC| to the required electrical energy input |W|, both in joules. The coefficient of performance is also expressed as a ratio of powers,

K = | Q C | / t | W | / t

where |QC|/t is the cooling power and |W|/t is the electrical power input to the device, both in watts. The energy efficiency ratio (EER) is the same quantity expressed in units of Btu for |QC| and W · h for |W|. (a) Derive a general relationship that expresses EER in terms of K. (b) For a home air conditioner, EER is generally determined for a 95°F outside temperature and an 80°F return air temperature. Calculate EER for a Carnot device that operates between 95°F and 80°F. (c) You have an air conditioner with an EER of 10.9. Your home on average requires a total cooling output of |QC| = 1.9 × 1010 J per year. If electricity costs you 15.3 cents per kW · h, how much do you spend per year, on average, to operate your air conditioner? (Assume that the unit’s EER accurately represents the operation of your air conditioner. A seasonal energy efficiency ratio (SEER) is often used. The SEER is calculated over a range of outside temperatures to get a more accurate seasonal average.) (d) You are considering replacing your air conditioner with a more efficient one with an EER of 14.6. Based on the EER, how much would that save you on electricity costs in an average year?

Blurred answer
Students have asked these similar questions
The enthalpy of a system is given by the equation H=U+PV where U is the internal energy, P=pressure, and V=volume. In addition, the internal energy, U=Q+W where Q is the heat and W is the work. Suppose we want to find the rate of change in the enthalpy at constant pressure of 1.75 atm, what is the value when heat is absorbed by the system at a rate of 55 J/s and work is done by the system at a rate of 200 J/s when the change of volume is rated at 76 x 10^-5 m^3/s?  1. What is the change in heat with respect to time?2. What is the change in internal energy of the system with respect to time?3. What is the change in enthalpy of the system with respect to time?
Problem 2: The enthalpy of a system is given by the equation H = U + PV where U is the internal energy, P = pressure, and V = volume. In addition, the internal energy, U = Q + W where Q is the heat and W is the work. Suppose we want to find the rate of change in the enthalpy at constant pressure of 1.25 atm, what is the value when heat is absorbed by the system at a rate of 45 J/s and work is done by the system at a rate of 100 J/s when the change of volume is rated at 35 x 105 m/s? 1. What is the change in heat with respect to time? 2. What is the change in internal energy of the system with respect to time? 3. What is the change in enthalpy of the system with respect to time?
1. (a) Calculate a numerical value for the isothermal compressibility kT = -+ (), for air for summer in Albuquerque under the conditions of 0.83 atm and 311 K (100 °F), assuming ideal gas behavior. (b) The speed of sound is related to the isothermal compressibility via 1 Vsound p KT where the adiabatic exponenty = 7/5. Evaluate this expression to find the speed of sound in air (in meters per second, or in mph). It is helpful to note that the mass density p = (kg/mole) and molar density, i.e. the number of moles per cubic meter, which is the ratio n/V. You can use the ideal gas law PV = nRT to write the ratio n/V in terms of your known pressure P and known temperature T. The gas constant R = 8.314 J/(mole-Kelvin) or alternatively R = 0.08206 (liter-atm)/(mole- K). Standard temperature and pressure are 0 degrees C (273.15 K) and 1 atm (1.013×105 N/m²). A good estimate of M for air can be found by taking 20% of the molecular weight of oxygen and adding this to 80% of the molecular weight…

Chapter 20 Solutions

University Physics (14th Edition)

Ch. 20 - The efficiency of heat engines is high when the...Ch. 20 - What would be the efficiency of a Carnot engine...Ch. 20 - Real heat engines, like the gasoline engine in a...Ch. 20 - Does a refrigerator full of food consume more...Ch. 20 - How can the thermal conduction of heat from a hot...Ch. 20 - Explain why each of the following processes is an...Ch. 20 - The free expansion of an ideal gas is an adiabatic...Ch. 20 - Are the earth and sun in thermal equilibrium? Are...Ch. 20 - Prob. Q20.20DQCh. 20 - Prob. Q20.21DQCh. 20 - Prob. Q20.22DQCh. 20 - BIO A growing plant creates a highly complex and...Ch. 20 - A diesel engine performs 2200 J of mechanical work...Ch. 20 - An aircraft engine takes in 9000 J of heat and...Ch. 20 - A Gasoline Engine. A gasoline engine takes in 1.61...Ch. 20 - A gasoline engine has a power output of 180 kW...Ch. 20 - The pV-diagram in Fig. E20.5 shows a cycle of heat...Ch. 20 - (a) Calculate the theoretical efficiency for an...Ch. 20 - The Otto-cycle engine in a Mercedes-Benz SL1 a...Ch. 20 - Section 20.4 Refrigerators 20.8The coefficient of...Ch. 20 - A refrigerator has a coefficient of performance of...Ch. 20 - A freezer has a coefficient of performance of...Ch. 20 - A refrigerator has a coefficient of performance of...Ch. 20 - A Carnot engine is operated between two heat...Ch. 20 - A Carnot engine whose high-temperature reservoir...Ch. 20 - An ice-making machine operates in a Carnot cycle....Ch. 20 - A Carnot engine has an efficiency of 66% and...Ch. 20 - A certain brand of freezer is advertised to use...Ch. 20 - A Carnot refrigerator is operated between two heat...Ch. 20 - A Carnot heat engine uses a hot reservoir...Ch. 20 - You design an engine that takes in 1.50 104 J of...Ch. 20 - A 4.50-kg block of ice at 0.00C falls into the...Ch. 20 - A sophomore with nothing better to do adds heat to...Ch. 20 - CALC You decide to take a nice hot bath but...Ch. 20 - A 15.0-kg block of ice at 0.0C melts to liquid...Ch. 20 - CALC You make tea with 0.250 kg of 85.0C water and...Ch. 20 - Three moles of an ideal gas undergo a reversible...Ch. 20 - What is the change in entropy of 0.130 kg of...Ch. 20 - (a) Calculate the change in entropy when 1.00 kg...Ch. 20 - Entropy Change Due to Driving. Premium gasoline...Ch. 20 - CALC Two moles of an ideal gas occupy a volume V....Ch. 20 - A box is separated by a partition into two parts...Ch. 20 - CALC A lonely party balloon with a volume of 2.40...Ch. 20 - You are designing a Carnot engine that has 2 mol...Ch. 20 - CP An ideal Carnot engine operates between 500C...Ch. 20 - Prob. 20.34PCh. 20 - CP A certain heat engine operating on a Carnot...Ch. 20 - A heat engine takes 0.350 mol of a diatomic ideal...Ch. 20 - Prob. 20.37PCh. 20 - What is the thermal efficiency of an engine that...Ch. 20 - CALC You build a heal engine that takes 1.00 mol...Ch. 20 - CP As a budding mechanical engineer, you are...Ch. 20 - CALC A heal engine Operates using the cycle shown...Ch. 20 - CP BIO Humun Entropy. A person who has skin of...Ch. 20 - An experimental power plant at the Natural Energy...Ch. 20 - CP BIO A Human Engine. You decide to use your body...Ch. 20 - CALC A cylinder contains oxygen at a pressure of...Ch. 20 - A monatomic ideal gas it taken around the cycle...Ch. 20 - A Carnot engine operates between two heat...Ch. 20 - A typical coal-fired power plant generates 1000 MW...Ch. 20 - Automotive Thermodynamics. A Volkswagen Passat has...Ch. 20 - An air conditioner operates on 800 W of power and...Ch. 20 - The pV-diagram in Fig. P20.51 shows the cycle for...Ch. 20 - BIO Human Entropy. A person with skin of surface...Ch. 20 - CALC An object of mass m1, specific heat c1, and...Ch. 20 - CALC To heat 1 cup of water (250 cm3) to make...Ch. 20 - DATA In your summer job with a venture capital...Ch. 20 - DATA For a refrigerator or air conditioner, the...Ch. 20 - DATA You are conducting experiments to study...Ch. 20 - Consider a Diesel cycle that starts (at point a in...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY