
(a)
Interpretation:
The temperature in which reaction becomes spontaneous and corresponding temperature has to be calculated
Concept introduction:
Spontaneous process: A process which is initiated by itself, without the help of external energy source is called spontaneous process. All spontaneous process is associated with the decrease in free energy in the system.
Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. Factors like temperature, molar mass, molecular complexity and phase transition occurring in a reaction influences the entropy in a system.
Free energy (or) entropy change is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,
(a)

Answer to Problem 20.110P
Given reaction the calculated temperature value is
Explanation of Solution
Given
In this reaction two mole of
Standard enthalpy change is,
The enthalpy change for the
Hence, the enthalpy
Entropy change
Calculate the change in entropy for this reaction as follows,
Where,
The
The entropy change is positive sign for
Determination for temperature (T)
The reaction will become spontaneous when
Standared Free energy change equation is,
Rearrange the equation (2) to calculate temprature T,
Hence,
Calculated enthalpy
At temprature above
(b)
Interpretation:
The temperature for the formation of acetylene from carbon and hydrogen has to be calculated.
Concept introduction:
Free energy (or) entropy change is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. The entropy changes associated with a phase transition reaction can be found by the following equation.
Where,
(b)

Answer to Problem 20.110P
Acetylene formation reaction calculated temperature value is
Explanation of Solution
Given
In this reaction, elements of carbon (graphite) reacted with hydrogen produced a one mole of acetylene.
Standard enthalpy change is,
The enthalpy change for the
Hence, the enthalpy
Entropy change
Calculate the change in entropy for this reaction as follows,
Where,
The
The entropy change is positive sign for
Determination for temperature (T)
The reaction will become spontaneous when
Standared Free energy change equation is,
Rearrange the equation (2) to calculate temprature T,
Hence,
Calculated enthalpy
At temprature will become above
(c)
Interpretation:
The reason for the immediate cooling of reaction mixture has to be identified.
Concept introduction:
Forward Reaction: This type of reaction has involved irreversible, if obtained product cannot be converted back in to respective reactants under the same conditions. Backward Reaction: This type of reaction process involved a reversible, if the products can be converted into a back to reactants.
Thermal decomposition reaction: This reaction caused by heat or decomposition of starting substance is the temperature at which the substance chemically decomposes. In other words large molecules being broken down into single elements (or) compounds.
(c)

Answer to Problem 20.110P
Acetylene formation is,
Explanation of Solution
Given
Considering the revrese reaction of its formation. The acetylene is product under conditions at which acetylene is unstable aand can decompose back into its elements. It must be quickely cooled to a temprature where its thermal decomposition rate is slow.
The reaction rate is higher at the temperature. The time required (kinetics) overshadows the lower yield (
Want to see more full solutions like this?
Chapter 20 Solutions
Chemistry: The Molecular Nature of Matter and Change
- 6.15PM Sun Mar 30 K Draw the major product of this reaction. Include any relevant stereochemistry. Ignore inorganic byproducts. Problem 1 of O H [PhзPCH2CH3]*C|¯ NaH Drawing > Q Atoms, Bonds and Draw or tap a nearrow_forward8:17 PM Sun Mar 30 Draw the major product of this reaction. Ignore inorganic byproducts. HSCH2CH2CH2SH, BF3 Probler Drawing Ato Bonds Clarrow_forwardpresented by Mr L How the coprion. (Il Done in no wraction, dew the starting redential) доarrow_forward
- 8:16 PM Sun Mar 30 K Draw the major product of this reaction. Ignore inorganic byproducts. Proble 1. CH3MgBr 2. H3O+ F Drawingarrow_forwardо но оarrow_forwardName the major organic product of the following action of 4-chloro-4-methyl-1-pentanol in neutral pollution 10+ Now the product. The product has a molecular formula f b. In a singly hain, the starting, material again converts into a secule with the molecular kormula CIO. but with comply Draw the major organic structure inhalationarrow_forward
- Macmillan Learning Alcohols can be oxidized by chromic acid derivatives. One such reagent is pyridinium chlorochromate, (C,H,NH*)(CICTO3), commonly known as PCC. Draw the proposed (neutral) intermediate and the organic product in the oxidation of 1-butanol by PCC when carried out in an anhydrous solvent such as CH₂C₁₂. PCC Intermediate OH CH2Cl2 Draw the intermediate. Select Draw Templates More с H Cr о Product Draw the product. Erase Select Draw Templates More H о Erasearrow_forwardIf I have 1-bromopropene, to obtain compound A, I have to add NaOH and another compound. Indicate which compound that would be. A C6H5 CH3arrow_forwardProvide the reagents for the following reactions.arrow_forward
- If I have 1-bromopropene, to obtain compound Z, I have to add two compounds A1 and A2. Indicate which compounds are needed. P(C6H5)3arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. Assume that the water side product is continuously removed to drive the reaction toward products. O CH3CH2NH2, TSOH Select to Draw >arrow_forwardPredict the major organic product(s) for the following reaction.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





