![Chemistry (7th Edition)](https://www.bartleby.com/isbn_cover_images/9780321943170/9780321943170_largeCoverImage.gif)
Concept explainers
(b)
Interpretation:
The valence bond description of the bonding in
Concept introduction:
- In
valence bond theory , the donation of pairs of electrons by ligands to the central metal atom or ion results in the metal-ligand bond. - The metal ion possesses a requisite number of valence orbitals of almost equal energy in order to accommodate the electrons given by ligands.
- The unpaired (n-1) d electrons, pair up as fully as possible prior to hybridization thus making some (n-1) d orbitals vacant. The central metal atom then makes available the number of empty orbitals equal to its coordination number for the formation of coordinate bonds with suitable ligand orbitals.
- With the approach of the ligands, metal-ligand bonds are then formed by the overlap of these orbitals with those of the ligands, that is by donation of electron pairs by the ligands to the empty hybridized orbitals.
(c)
Interpretation:
The valence bond description of the bonding in
Concept introduction:
- In valence bond theory, the donation of pairs of electrons by ligands to the central metal atom or ion results in the metal-ligand bond.
- The metal ion possesses a requisite number of valence orbitals of almost equal energy in order to accommodate the electrons given by ligands.
- The unpaired (n-1) d electrons, pair up as fully as possible prior to hybridization thus making some (n-1) d orbitals vacant. The central metal atom then makes available the number of empty orbitals equal to its coordination number for the formation of coordinate bonds with suitable ligand orbitals.
- With the approach of the ligands, metal-ligand bonds are then formed by the overlap of these orbitals with those of the ligands, that is by donation of electron pairs by the ligands to the empty hybridized orbitals.
(d)
Interpretation:
The valence bond description of the bonding in
Concept introduction:
- In valence bond theory, the donation of pairs of electrons by ligands to the central metal atom or ion results in the metal-ligand bond.
- The metal ion possesses a requisite number of valence orbitals of almost equal energy in order to accommodate the electrons given by ligands.
- The unpaired (n-1) d electrons, pair up as fully as possible prior to hybridization thus making some (n-1) d orbitals vacant. The central metal atom then makes available the number of empty orbitals equal to its coordination number for the formation of coordinate bonds with suitable ligand orbitals.
- With the approach of the ligands, metal-ligand bonds are then formed by the overlap of these orbitals with those of the ligands, that is by donation of electron pairs by the ligands to the empty hybridized orbitals.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 20 Solutions
Chemistry (7th Edition)
- Please do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forwardPlease answer the question and provide detailed explanations.arrow_forwardAll of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward
- 5. Fill in the missing molecules in the following reaction pathway. TMSO Heat + CI then HF O₂N (1.0 equiv) AICI 3 OMearrow_forwarde. O₂N NO2 1. excess H2, Pd/C 2. excess NaNO2, HCI 3. excess CuCNarrow_forwardHelp with a periodic table task.' Procedure Part 1: Customizing a Periodic Table Use a textbook or other valid source to determine which elements are metals, nonmetals, metalloids (called semimetals in some texts), alkali metals, alkaline earth metals, transition metals, halogens, and noble gases. Download and print a copy of the Periodic Table of Elements. Use colored pencils, colorful highlighters, or computer drawing tools to devise a schematic for designating each of the following on the periodic table: Group numbers Period number Labels for these groups: alkali metals, alkaline earth metals, transition metals, inner transition metals (lanthanides and actinides), other metals, metalloids (semimetals), other nonmetals, halogens, and noble gases Metals, nonmetals, and metalloids Note: Write the group and period numbers and color/highlight each element for categorization. Be sure to include a key for the schematic. Take a photo of the completed periodic table and upload the…arrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardCan you explain these two problems for mearrow_forward个 ^ Blackboard x Organic Chemistry II Lecture (m x Aktiv Learning App x → C app.aktiv.com ← Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 28 of 35 :OH H HH KO Select to Edit Arrows CH CH₂OK, CH CH2OH 5+ H :0: Donearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)