![Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_largeCoverImage.gif)
(a)
Find the future value for
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The future value for
Explanation of Solution
Given data:
The present cost
The normal interest rate
The number of years
The number of compound period
Formula used:
Formula to calculate the future value is,
Here,
Calculation:
To calculate the future value:
Substitute
Therefore, the future value for
Conclusion:
Thus, the future value for
(b)
Find the future value for
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The future value for
Explanation of Solution
Given data:
The present cost
The normal interest rate
The number of years
The number of compound period
Formula used:
Formula to calculate the future value is,
Here,
Calculation:
To calculate the future value:
Substitute
Therefore, the future value for
Conclusion:
Thus, the future value for
(c)
Find the future value for
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The future value for
Explanation of Solution
Given data:
The present cost
The normal interest rate
The number of years
The number of compound periods per year
Formula used:
Formula to calculate the future value is,
Here,
Calculation:
To calculate the future value:
Substitute
Therefore, the future value for
Conclusion:
Thus, the future value for
Want to see more full solutions like this?
Chapter 20 Solutions
Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)
- s الله + 600 2 Example 5 For the exterior longitudinal frame (Frame B) of the flat plate floor shown in figure, and by using the Direct Design Method, find: a. Longitudinal distribution of the total static moment at factored loads. b. Lateral distribution of moment at exterior panel (column and middle strip moments at exterior support) Slab thickness = 175 mm, d=140 mm qu=14.0 kN/m² All columns = 600x 400 mm 916 *5000*5000*5000* B Sinter line 16400- 6400 -6400-arrow_forwardExample 8 For the longitudinal frame of the flat slab floor shown in figure, and by using the Direct Design Method, find: a. Longitudinal distribution of the total static moment at factored loads. b. Lateral distribution of moment at exterior panel (column and middle strip moments at exterior support) qu 18.0 kN/m² edge beams: 300×600 mm 5000 mm CL Panel 6000 واجب 750 750- 400 099- 5000 mm +2000+ CL Panel 1120 Drop Panal Cobum Cop 250 احول دائري الى توسيع احلة $400mm face to face 6000 mmarrow_forwardExample 9 For the the transverse exterior frame (Frame D) of the flat plate floor, without edge beams, shown in Figure, and by using the Direct Design Method, find: a. Longitudinal distribution of the total static moment at factored loads. b. Lateral distribution of moment at interior panel (column and middle stripmoments at negative and positive moments). Slab thickness = 180 mm, d = 150 mm qu= 15.0 kN/m², All columns = 400×400 mm 5.0 m- 5.0- 5.0- نصف عرف العمود 6.0 marrow_forward
- Example 7 For the transverse frame of the flat slab floor shown in figure, and by using the Direct Design Method, find: a. Longitudinal distribution of the total static moment at factored loads. b. Lateral distribution of moment at exterior panel (column and middle strip moments atexterior support) Flit D = 7.0 kN/m² L = 4.0 kN/m² 3000- 5000 -160 +1000+ 5000 009- 300-1000arrow_forwardDetermine the amount of rebar needed for the spread footing where the dowels extend 24 inches into the column allow for 3 inches of concrete coverarrow_forwardConsider the forces acting on the handle of the wrench in Figure 1arrow_forward
- The following table gives the variation of the field standard penetration number (№60) in a sand deposit: Depth (m) N60 1.5 6 3.0 14 4.5 14 6.0 19 17 7.5 9.0 23 The groundwater table is located at a depth of 12 m. The dry unit weight of sand from 0 to a depth of 12 m is 17.6 kN/m³. Assume the mean grain size (D 50) of the sand deposit to be about 0.8 mm. Estimate the variation of the relative density with depth for sand. Use the equation N60 (0.23 +0.06/D50) 1.7 1 Dr (%) = 9 σ'o/Pa (Enter your answers to three significant figures.) Depth (m) N60 Dr (%) 1.5 6 3.0 14 4.5 14 6.0 19 7.5 17 9.0 23 0.5 (100)arrow_forward00 N 50° W NAZ 310 Length & plane Survey! E Х A (9 13arrow_forwardA cone penetration test was carried out in normally consolidated sand, for which the results are summarized below: Depth (m) Cone resistance, qc (MN/m²) 2.0 3.5 5.0 6.5 8.0 4.02 5.15 6.04 10.13 13.10 The average unit weight of the sand is 16.5 kN/m³. Assume moderately compressible sand and hence Q Determine the relative density at each depth using the equation below. Dr = 1 305QOCR1.8 Яс Pa 0.5 0 Pa (Enter your answers to three significant figures.) Depth (m) Dr (%) 2.0 3.5 5.0 6.5 8.0 = 1.arrow_forward
- A vane shear test was conducted in a saturated soft clay, using a 100 mm x 260 mm vane. When the vane was rotated at the standard rate of 0.1°/s, the torque measured in the torque meter increased to 60 N. m, and with further rotation reduced to 35 N. m. Determine the peak and residual undrained shear strengths of the clay. (Enter your answers to three significant figures.) Peak undrained shear strength Residual undrained shear strength = kN/m² kN/m²arrow_forwardFollowing is the variation of the field standard penetration number (№60) in a sand deposit: Depth (m) Neo N60 1.5 6 3 8 4.5 9 6 8 7.5 9 13 14 The groundwater table is located at a depth of 6 m. Given: the dry unit weight of sand from 0 to a depth of 6 m is 19 kN/m³, and the saturated unit weight of sand for depth 6 to 12 m is 20.2 kN/m³. Estimate an average peak soil friction angle. Use the equation CN - [ 1 (o'o/Pa). 0.5 (Enter your answer to three significant figures.) $' =arrow_forwardThe beam shown in the figure below is typical for a floor system in an existing building.It needs to carry a uniform live load of 260 lb/ft and a uniform dead weight of 400 lb/ft,including its own weight. The owner wants to add a partition weighing 7 kip (live load) asshown. Assuming the added partition as live load, is the beam section adequate to safelycarry the extra live load? a. Determine the design moment capacity .b. Determine the factored applied bending moment. c. Is the beam safe and adequate for bending? Please explain your response.arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399395/9781337399395_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305635203/9781305635203_smallCoverImage.gif)
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)