
Find the equivalent present worth, annual worth, and future worth of the cash flow diagram.

Answer to Problem 18P
The equivalent present worth, annual worth, and future worth of the cash flow diagram is
Explanation of Solution
Given data:
The normal interest rate
Formula used:
Formula to calculate the present worth for the given cash flow diagram is,
Here,
Refer the Problem 20.18 Figure in the textbook, the equation (1) is rewritten with respect to the given number of years is,
Formula to calculate the present cost for the given uniform series payment is,
Formula to calculate the present cost for the given future value is,
Formula to calculate the annual worth for the given cash flow diagram is,
Here,
Refer the Problem 20.18 figure, the equation (5) is rewritten with respect to the given number of years is,
Formula to calculate the uniform series payment for the given present cost is,
Formula to calculate the future worth for the given cash flow diagram is,
Refer the Problem 20.18 figure, the equation (8) is rewritten with respect to the given number of years is,
Formula to calculate the future cost for the given present cost is,
Calculation:
Case (i): Equivalent present worth.
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Case (ii): Equivalent annual worth.
Substitute
Substitute
Case (iii): Equivalent future worth.
Substitute
Substitute
Therefore, the equivalent present worth, annual worth, and future worth of the cash flow diagram is
Conclusion:
Thus, the equivalent present worth, annual worth, and future worth of the cash flow diagram is
Want to see more full solutions like this?
Chapter 20 Solutions
Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)
- Calculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the moment distribution method, and draw the Shear force diagram and Bending moment diagram for the beam shown. The beam is subjected to an UDL of w=65m. L=4.5m L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200GPa, I = 250x106 mm4.arrow_forwardCalculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the Slope deflection method. The beam is subjected to an UDL of w=65m. L=4.5m L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200GPa, I = 250x106 mm4.arrow_forwardThank you for your help if you would also provide the equations used .arrow_forward
- The sectors are divided as follows:top right = 1, top left = 2, middle = 3, bottom = 4.(a) Determine the distance yˉ to the centroid of the beam’s cross-sectional area.Solve the next questions by building a table. (Table format Answers) (b) Determine the second moment of area (moment of inertia) about the x′ axis. (c) Determine the second moment of area (moment of inertia) about the y-axis.arrow_forwardinstructions: make sure to follow the instructions and provide complete and detailed solution create/draw a beam with uniformly distributed load and concentrated load after, find the shear and moment equation and ensure to draw it's shear and moment diagram once done, write it's conclusion or observation 4:57 PMarrow_forwardSolve for forces on pin C and Darrow_forward
- Borrow pit soil is being used to fill an 900,00 yd3 of depression. The properties of borrowpit and in-place fill soils obtained from laboratory test results are as follows:• Borrow pit soil: bulk density 105 pcf, moisture content = 8%, and specific gravity = 2.65• In-place fill soil: dry unit weight =120 pcf, and moisture content = 16%(a) How many yd3 of borrow soil is required?(b) What water mass is needed to achieve 16% moisture in the fill soil?(c) What is the in-place density after a long rain?arrow_forwardsolve for dt/dx=f(t,x)=x+t^2arrow_forwardCalculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the slope deflection method, draw the resulting shear force diagran and bending moment diagram. The beam is subjected to an UDL of w=65m. L=4.5m, L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200 GPa, I = 250x106 mm4.arrow_forward
- Problem 2 (A is fixed and C is a pin) Find the reactions and A and C. 10 k- 6 ft 6 ft B A 2 k/ft 15 ftarrow_forward6. A lake with no outlet is fed by a river with a constant flow of 1200 ft3/s. Water evaporates from the surface at a constant rate of 13 ft3/s per square mile of surface area. The surface area varies with the depth h (in feet) as A (square miles) = 4.5 + 5.5h. What is the equilibrium depth of the lake? Below what river discharge (volume flow rate) will the lake dry up?arrow_forwardProblem 5 (A, B, C and D are fixed). Find the reactions at A and D 8 k B 15 ft A -20 ft C 10 ft Darrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning



