Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 12E
Interpretation Introduction
Interpretation: Explain whether the large negative and positive electrode potential indicate a strong reducing agent or a strong oxidizing agent.
Concept introduction:
Electrode potential – Potential obtained in the cell from the electrode which acts as a cathode where the hydrogen electrode acts as an anode.
To determine: The relationship between the size of the electrode potential and the oxidizing/reducing agents.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 20 - Balance the redox reaction equation (occurring in...Ch. 20 - Prob. 2SAQCh. 20 - Prob. 3SAQCh. 20 - Refer to Table 19.1 to determine which statement...Ch. 20 - Prob. 5SAQCh. 20 - The Zn/Zn2+ electrode has a standard electrode...Ch. 20 - Refer to Table 19.1 to calculate G for the...Ch. 20 - A redox reaction has an Ecell=0.56V . What can you...Ch. 20 - Prob. 9SAQCh. 20 - Prob. 10SAQ
Ch. 20 - Prob. 11SAQCh. 20 - Prob. 12SAQCh. 20 - Which reaction occurs at the cathode of an...Ch. 20 - Copper is plated onto the cathode of an...Ch. 20 - Prob. 15SAQCh. 20 - Prob. 1ECh. 20 - Explain the difference between a voltaic (or...Ch. 20 - Prob. 3ECh. 20 - Prob. 4ECh. 20 - Prob. 5ECh. 20 - Prob. 6ECh. 20 - What is the definition of the standard cell...Ch. 20 - Describe the basic features of a cell diagram (or...Ch. 20 - Why do some electrochemical cells employ inert...Ch. 20 - Describe the standard hydrogen electrode (SHE) and...Ch. 20 - How is the cell potential of an electrochemical...Ch. 20 - Prob. 12ECh. 20 - Prob. 13ECh. 20 - How can Table 19.1be used to predict whether or...Ch. 20 - Explain why Ecell , Grxn , and K are all...Ch. 20 - Does a redox reaction with a small equilibrium...Ch. 20 - How does Ecell depend on the concentrations of the...Ch. 20 - Prob. 18ECh. 20 - What is a concentration electrochemical cell?Ch. 20 - What are the anode and cathode reactions in a...Ch. 20 - What are the anode and cathode reactions in a...Ch. 20 - Prob. 22ECh. 20 - What is a fuel cell? What is the most common type...Ch. 20 - The anode of an electrolytic cell must be...Ch. 20 - What species is oxidized, and what species is...Ch. 20 - If an electrolytic cell contains a mixture of...Ch. 20 - Why does the electrolysis of an aqueous sodium...Ch. 20 - What is overvoltage in an electrochemical cell?...Ch. 20 - How is the amount of current flowing through an...Ch. 20 - Prob. 30ECh. 20 - Prob. 31ECh. 20 - Prob. 32ECh. 20 - Balance each redox reaction occurring in acidic...Ch. 20 - Prob. 34ECh. 20 - Balance each redox reaction occurring in acidic...Ch. 20 - Prob. 36ECh. 20 - Prob. 37ECh. 20 - Balance each redox reaction occurring in basic...Ch. 20 - Prob. 39ECh. 20 - Prob. 40ECh. 20 - Calculate the standard cell potential for each of...Ch. 20 - Prob. 42ECh. 20 - Consider the voltaic cell: Determine the direction...Ch. 20 - Prob. 44ECh. 20 - Use line notation to represent each...Ch. 20 - Use line notation to represent each...Ch. 20 - a sketch of the voltaic cell represented by the...Ch. 20 - Prob. 48ECh. 20 - Determine whether or not each redox reaction...Ch. 20 - Prob. 50ECh. 20 - Which metal could you use to reduce Mn2+ ions but...Ch. 20 - Prob. 52ECh. 20 - Prob. 53ECh. 20 - Prob. 54ECh. 20 - Prob. 55ECh. 20 - Prob. 56ECh. 20 - Calculate Ecell for each balanced redox reaction...Ch. 20 - Prob. 58ECh. 20 - Prob. 59ECh. 20 - Which metal is the best reducing agent? Mn Al Ni...Ch. 20 - Use tabulated electrode potentials to calculate...Ch. 20 - Use tabulated electrode potentials to calculate...Ch. 20 - Prob. 63ECh. 20 - Calculate the equilibrium constant for each of the...Ch. 20 - Calculate the equilibrium constant for the...Ch. 20 - Prob. 66ECh. 20 - Calculate Grxn and Ecell for a redox reaction with...Ch. 20 - Prob. 68ECh. 20 - Prob. 69ECh. 20 - Prob. 70ECh. 20 - Prob. 71ECh. 20 - Prob. 72ECh. 20 - Prob. 73ECh. 20 - Prob. 74ECh. 20 - Prob. 75ECh. 20 - Consider the concentration cell: Label the anode...Ch. 20 - Prob. 77ECh. 20 - Prob. 78ECh. 20 - Prob. 79ECh. 20 - Prob. 80ECh. 20 - Refer to the tabulated values of Gf in Appendix...Ch. 20 - Refer to the tabulated values of Gf in Appendix...Ch. 20 - Prob. 83ECh. 20 - Prob. 84ECh. 20 - Prob. 85ECh. 20 - Prob. 86ECh. 20 - Prob. 87ECh. 20 - Which products are obtained in the electrolysis of...Ch. 20 - Write equations for the half-reactions that occur...Ch. 20 - Which products are obtained in the electrolysis of...Ch. 20 - Prob. 91ECh. 20 - Write equations for the half-reactions that occur...Ch. 20 - Prob. 93ECh. 20 - Prob. 94ECh. 20 - Prob. 95ECh. 20 - Silver can be electroplated at the cathode of an...Ch. 20 - A major source of sodium metal is the electrolysis...Ch. 20 - Prob. 98ECh. 20 - Prob. 99ECh. 20 - Prob. 100ECh. 20 - Consider the molecular view of an AL strip and...Ch. 20 - Consider the molecular view of an electrochemical...Ch. 20 - Prob. 103ECh. 20 - Prob. 104ECh. 20 - The cell potential of this electrochemical cell...Ch. 20 - Prob. 106ECh. 20 - Prob. 107ECh. 20 - What voltage can theoretically be achieved in a...Ch. 20 - A battery relies on the oxidation of magnesium and...Ch. 20 - A rechargeable battery is constructed based on a...Ch. 20 - If a water electrolysis cell operates at a current...Ch. 20 - Prob. 112ECh. 20 - Prob. 113ECh. 20 - Prob. 114ECh. 20 - Calculate Grxn and K for each reaction. The...Ch. 20 - Calculate Grxn and K for each reaction. The...Ch. 20 - The molar mass of a metal (M) is 50.9 g/mol; it...Ch. 20 - A metal forms the fluoride MF3. Electrolysis of...Ch. 20 - A sample of impure tin of mass 0.535 g is...Ch. 20 - Prob. 120ECh. 20 - Prob. 121ECh. 20 - A 215 mL sample of a 0.500 M NaCl solution with an...Ch. 20 - Prob. 123ECh. 20 - Prob. 124ECh. 20 - Prob. 125ECh. 20 - Prob. 126ECh. 20 - Prob. 127ECh. 20 - Prob. 128ECh. 20 - Prob. 129ECh. 20 - Three electrolytic cells are connected in a...Ch. 20 - Prob. 131ECh. 20 - Prob. 132ECh. 20 - Prob. 133ECh. 20 - Prob. 134ECh. 20 - Prob. 135E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Use the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forwardGive the notation for a voltaic cell whose overall cell reaction is Mg(s)+2Ag+(aq)Mg2+(aq)+2Ag(s) What are the half-cell reactions? Label them as anode or cathode reactions. What is the standard cell potential of this cell?arrow_forwardFor a voltage-sensitive application, you are working on a battery that must have a working voltage of 0.85 V. The half-cells to be used have a standard cell potential of 0.97 V. What must be done to achieve the correct voltage? What information would you need to look up?arrow_forward
- Given the following two standard reduction potentials, solve for the standard reduction potential of the half-reaction M3++eM2+ (Hint: You must use the extensive property G to determine the standard reduction potential.)arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forward
- Galvanized steel pipes are used in the plumbing of many older homes. When copper plumbing is added to a system consisting of galvanized steel pipes it is necessary to place an insulator between the copper and the steel to avoid corrosion. Write a balanced oxidation-reduction equation for the reaction that occurs if the pipes are directly connected. What is the standard potential between the metals?arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forward
- Consider the cell Pt|H2|H+H+|H2|Pt In the anode half-cell, hydrogen gas at 1.0 atm is bubbled over a platinum electrode dipping into a solution that has a pH of 7.0. The other half-cell is identical to the first except that the solution around the platinum electrode has a pH of 0.0. What is the cell voltage?arrow_forwardConsider a galvanic cell based on the following half-reactions: a. What is the standard potential for this cell? b. A nonstandard cell is set up at 25C with [Mg2+] = 1.00 105 M. The cell potential is observed to be 4.01 V. Calculate [Au3+] in this cell.arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY