EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 8220100254147
Author: Chapra
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 11P
To determine
To calculate: The estimation of the growth rate of bacteria during the first 2 hours of growth and then during next 4 hours of growth for the given data,
Time, hr | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Cells, |
0.100 | 0.332 | 1.102 | 1.644 | 2.453 | 3.660 | 5.460 |
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
By considering appropriate series expansions,
e². e²²/2. e²³/3.
....
=
= 1 + x + x² + ·
...
when |x| < 1.
By expanding each individual exponential term on the left-hand side
the coefficient of x- 19 has the form
and multiplying out,
1/19!1/19+r/s,
where 19 does not divide s. Deduce that
18! 1 (mod 19).
By considering appropriate series expansions,
ex · ex²/2 . ¸²³/³ . . ..
=
= 1 + x + x² +……
when |x| < 1.
By expanding each individual exponential term on the left-hand side
and multiplying out, show that the coefficient of x 19 has the form
1/19!+1/19+r/s,
where 19 does not divide s.
Let
1
1
r
1+
+ +
2 3
+
=
823
823s
Without calculating the left-hand side, prove that r = s (mod 823³).
Chapter 20 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Ch. 20 - 20.1 Perform the same computation as in Sec. 20.1,...Ch. 20 - You perform experiments and determine the...Ch. 20 - 20.3 It is known that the tensile strength of a...Ch. 20 - Prob. 4PCh. 20 - 20.5 The specific volume of a superheated steam is...Ch. 20 - Prob. 6PCh. 20 - In Alzheimers disease, the number of neurons in...Ch. 20 - 20.8 The following data were taken from a stirred...Ch. 20 - Prob. 9PCh. 20 - Concentration data were taken at 15 time points...
Ch. 20 - Prob. 11PCh. 20 - The molecular weight of a polymer can be...Ch. 20 - 20.13 On average, the surface area A of human...Ch. 20 - 20.14 Determine an equation to predict metabolism...Ch. 20 - 20.15 Human blood behaves as a Newtonian fluid...Ch. 20 - 20.16 Soft tissue follows an exponential...Ch. 20 - 20.17 The thickness of the retina changes during...Ch. 20 - 20.18 The data tabulated below were generated from...Ch. 20 - The shear stresses, in kilopascals (kPa), of nine...Ch. 20 - 20.20 A transportation engineering study was...Ch. 20 - The saturation concentration of dissolved oxygen...Ch. 20 - For the data in Table P20.21, use polynomial...Ch. 20 - 20.23 Use multiple linear regression to derive a...Ch. 20 - 20.24 As compared to the models from Probs. 20.22...Ch. 20 - 20.25 In water-resources engineering, the sizing...Ch. 20 - 20.26 The concentration of total phosphorus and...Ch. 20 - 20.27 The vertical stress under the corner of a...Ch. 20 - Three disease-carrying organisms decay...Ch. 20 - 20.29 The mast of a sailboat has a cross-sectional...Ch. 20 - 20.30 Enzymatic reactions are used extensively to...Ch. 20 - 20.31 Environmental engineers dealing with the...Ch. 20 - An environmental engineer has reported the data...Ch. 20 - The following model is frequently used in...Ch. 20 - 20.34 As a member of Engineers Without Borders,...Ch. 20 - 20.35 Perform the same computations as in Sec....Ch. 20 - 20.36 You measure the voltage drop V across a...Ch. 20 - Duplicate the computation for Prob. 20.36, but use...Ch. 20 - The current in a wire is measured with great...Ch. 20 - 20.39 The following data was taken from an...Ch. 20 - It is known that the voltage drop across an...Ch. 20 - Ohms law states that the voltage drop V across an...Ch. 20 - 20.42 Repeat Prob. 20.41 but determine the...Ch. 20 - 20.43 An experiment is performed to determine the...Ch. 20 - Bessel functions often arise in advanced...Ch. 20 - 20.45 The population of a small community on the...Ch. 20 - Based on Table 20.4, use linear and quadratic...Ch. 20 - 20.47 Reproduce Sec. 20.4, but develop an equation...Ch. 20 - 20.48 Dynamic viscosity of water is related to...Ch. 20 - 20.49 Hooke’s law, which holds when a spring is...Ch. 20 - 20.50 Repeat Prob. 20.49 but fit a power curve to...Ch. 20 - The distance required to stop an automobile...Ch. 20 - An experiment is performed to define the...Ch. 20 - The acceleration due to gravity at an altitude y...Ch. 20 - The creep rate is the time rate at which strain...Ch. 20 - 20.55 It is a common practice when examining a...Ch. 20 - The relationship between stress and the shear...Ch. 20 - The velocity u of air flowing past a flat surface...Ch. 20 - 20.58 Andrade’s equation has been proposed as a...Ch. 20 - Develop equations to fit the ideal specific heats...Ch. 20 - 20.60 Temperatures are measured at various points...Ch. 20 - 20.61 The data below were obtained from a creep...
Knowledge Booster
Similar questions
- For each real-valued nonprincipal character X mod 16, verify that L(1,x) 0.arrow_forward*Construct a table of values for all the nonprincipal Dirichlet characters mod 16. Verify from your table that Σ x(3)=0 and Χ mod 16 Σ χ(11) = 0. x mod 16arrow_forwardFor each real-valued nonprincipal character x mod 16, verify that A(225) > 1. (Recall that A(n) = Σx(d).) d\narrow_forward
- 24. Prove the following multiplicative property of the gcd: a k b h (ah, bk) = (a, b)(h, k)| \(a, b)' (h, k) \(a, b)' (h, k) In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (h, k) = 1.arrow_forward20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as a linear combination of 826 and 1890.arrow_forwardLet 1 1+ + + + 2 3 1 r 823 823s Without calculating the left-hand side, Find one solution of the polynomial congruence 3x²+2x+100 = 0 (mod 343). Ts (mod 8233).arrow_forward
- By considering appropriate series expansions, prove that ez · e²²/2 . e²³/3 . ... = 1 + x + x² + · ·. when <1.arrow_forwardProve that Σ prime p≤x p=3 (mod 10) 1 Р = for some constant A. log log x + A+O 1 log x ,arrow_forwardLet Σ 1 and g(x) = Σ logp. f(x) = prime p≤x p=3 (mod 10) prime p≤x p=3 (mod 10) g(x) = f(x) logx - Ր _☑ t¯¹ƒ(t) dt. Assuming that f(x) ~ 1½π(x), prove that g(x) ~ 1x. 米 (You may assume the Prime Number Theorem: 7(x) ~ x/log x.) *arrow_forward
- Let Σ logp. f(x) = Σ 1 and g(x) = Σ prime p≤x p=3 (mod 10) (i) Find ƒ(40) and g(40). prime p≤x p=3 (mod 10) (ii) Prove that g(x) = f(x) logx – [*t^¹ƒ(t) dt. 2arrow_forwardWhen P is True and Q is False, what is the truth value of (P→ ~Q)? a. True ○ b. False c. unknownarrow_forwardNo chatgpt plsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning