
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 8220100254147
Author: Chapra
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 11P
To determine
To calculate: The estimation of the growth rate of bacteria during the first 2 hours of growth and then during next 4 hours of growth for the given data,
Time, hr | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Cells, |
0.100 | 0.332 | 1.102 | 1.644 | 2.453 | 3.660 | 5.460 |
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Suppose we have a linear program in standard equation form
maximize cTx
subject to Ax = b.
x ≥ 0.
and suppose u, v, and w are all optimal solutions to this linear program.
(a) Prove that zu+v+w is an optimal solution.
(b) If you try to adapt your proof from part (a) to prove that that u+v+w
is an optimal solution, say exactly which part(s) of the proof go wrong.
(c) If you try to adapt your proof from part (a) to prove that u+v-w is an
optimal solution, say exactly which part(s) of the proof go wrong.
a) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in
standard inequality form (with 3 variables and 4 constraints) and suppose that we have
reached a point where we have obtained the following tableau. Apply one more pivot
operation, indicating the highlighted row and column and the row operations you carry
out. What can you conclude from your updated tableau?
x1
x2 x3
81 82
83
84
81
-2 0
1 1 0
0
0
3
82
3 0
-2 0
1
2
0
6
12
1
1
-3
0
0
1
0
2
84
-3 0
2
0
0 -1
1
4
-2 -2 0
11
0
0-4
0
-8
Please solve number 2.
Chapter 20 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Ch. 20 - 20.1 Perform the same computation as in Sec. 20.1,...Ch. 20 - You perform experiments and determine the...Ch. 20 - 20.3 It is known that the tensile strength of a...Ch. 20 - Prob. 4PCh. 20 - 20.5 The specific volume of a superheated steam is...Ch. 20 - Prob. 6PCh. 20 - In Alzheimers disease, the number of neurons in...Ch. 20 - 20.8 The following data were taken from a stirred...Ch. 20 - Prob. 9PCh. 20 - Concentration data were taken at 15 time points...
Ch. 20 - Prob. 11PCh. 20 - The molecular weight of a polymer can be...Ch. 20 - 20.13 On average, the surface area A of human...Ch. 20 - 20.14 Determine an equation to predict metabolism...Ch. 20 - 20.15 Human blood behaves as a Newtonian fluid...Ch. 20 - 20.16 Soft tissue follows an exponential...Ch. 20 - 20.17 The thickness of the retina changes during...Ch. 20 - 20.18 The data tabulated below were generated from...Ch. 20 - The shear stresses, in kilopascals (kPa), of nine...Ch. 20 - 20.20 A transportation engineering study was...Ch. 20 - The saturation concentration of dissolved oxygen...Ch. 20 - For the data in Table P20.21, use polynomial...Ch. 20 - 20.23 Use multiple linear regression to derive a...Ch. 20 - 20.24 As compared to the models from Probs. 20.22...Ch. 20 - 20.25 In water-resources engineering, the sizing...Ch. 20 - 20.26 The concentration of total phosphorus and...Ch. 20 - 20.27 The vertical stress under the corner of a...Ch. 20 - Three disease-carrying organisms decay...Ch. 20 - 20.29 The mast of a sailboat has a cross-sectional...Ch. 20 - 20.30 Enzymatic reactions are used extensively to...Ch. 20 - 20.31 Environmental engineers dealing with the...Ch. 20 - An environmental engineer has reported the data...Ch. 20 - The following model is frequently used in...Ch. 20 - 20.34 As a member of Engineers Without Borders,...Ch. 20 - 20.35 Perform the same computations as in Sec....Ch. 20 - 20.36 You measure the voltage drop V across a...Ch. 20 - Duplicate the computation for Prob. 20.36, but use...Ch. 20 - The current in a wire is measured with great...Ch. 20 - 20.39 The following data was taken from an...Ch. 20 - It is known that the voltage drop across an...Ch. 20 - Ohms law states that the voltage drop V across an...Ch. 20 - 20.42 Repeat Prob. 20.41 but determine the...Ch. 20 - 20.43 An experiment is performed to determine the...Ch. 20 - Bessel functions often arise in advanced...Ch. 20 - 20.45 The population of a small community on the...Ch. 20 - Based on Table 20.4, use linear and quadratic...Ch. 20 - 20.47 Reproduce Sec. 20.4, but develop an equation...Ch. 20 - 20.48 Dynamic viscosity of water is related to...Ch. 20 - 20.49 Hooke’s law, which holds when a spring is...Ch. 20 - 20.50 Repeat Prob. 20.49 but fit a power curve to...Ch. 20 - The distance required to stop an automobile...Ch. 20 - An experiment is performed to define the...Ch. 20 - The acceleration due to gravity at an altitude y...Ch. 20 - The creep rate is the time rate at which strain...Ch. 20 - 20.55 It is a common practice when examining a...Ch. 20 - The relationship between stress and the shear...Ch. 20 - The velocity u of air flowing past a flat surface...Ch. 20 - 20.58 Andrade’s equation has been proposed as a...Ch. 20 - Develop equations to fit the ideal specific heats...Ch. 20 - 20.60 Temperatures are measured at various points...Ch. 20 - 20.61 The data below were obtained from a creep...
Knowledge Booster
Similar questions
- Construct a know-show table of the proposition: For each integer n, n is even if and only if 4 divides n^2arrow_forwardIn Problems 1 and 2 find the eigenfunctions and the equation that defines the eigenvalues for the given boundary-value problem. Use a CAS to approximate the first four eigenvalues A1, A2, A3, and A4. Give the eigenfunctions corresponding to these approximations. 1. y" + Ay = 0, y'(0) = 0, y(1) + y'(1) = 0arrow_forwardFind the closed formula for each of the following sequences (a_n)_n>=1 by realting them to a well known sequence. Assume the first term given is a_1 d. 5,23,119,719,5039 i have tried finding the differnces and the second difference and i still dont see the patternarrow_forward
- You manage a chemical company with 2 warehouses. The following quantities of Important Chemical A have arrived from an international supplier at 3 different ports: Chemical Available (L) Port 1 Port 2 Port 3 400 110 100 The following amounts of Important Chemical A are required at your warehouses: Warehouse 1 Warehouse 2 Chemical Required (L) 380 230 The cost in £ to ship 1L of chemical from each port to each warehouse is as follows: Warehouse 1 Warehouse 2 Port 1 £10 £45 Port 2 £20 £28 Port 3 £13 £11 (a) You want to know how to send these shipments as cheaply as possible. For- mulate this as a linear program (you do not need to formulate it in standard inequality form) indicating what each variable represents.arrow_forwarda) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in standard inequality form (with 3 variables and 4 constraints) and suppose that we have reached a point where we have obtained the following tableau. Apply one more pivot operation, indicating the highlighted row and column and the row operations you carry out. What can you conclude from your updated tableau? x1 12 23 81 82 83 S4 $1 -20 1 1 0 0 0 3 82 3 0 -2 0 1 2 0 6 12 1 1 -3 0 0 1 0 2 84 -3 0 2 0 0 -1 1 4 2 -2 0 11 0 0 -4 0 -8 b) Solve the following linear program using the 2-phase simplex algorithm. You should give the initial tableau and each further tableau produced during the execution of the algorithm. If the program has an optimal solution, give this solution and state its objective value. If it does not have an optimal solution, say why. maximize 21 - - 2x2 + x3 - 4x4 subject to 2x1+x22x3x4≥ 1, 5x1+x2-x3-4 -1, 2x1+x2-x3-342, 1, 2, 3, 4 ≥0.arrow_forwardSuppose we have a linear program in standard equation form maximize c'x subject to Ax=b, x≥ 0. and suppose u, v, and w are all optimal solutions to this linear program. (a) Prove that zu+v+w is an optimal solution. (b) If you try to adapt your proof from part (a) to prove that that u+v+w is an optimal solution, say exactly which part(s) of the proof go wrong. (c) If you try to adapt your proof from part (a) to prove that u+v-w is an optimal solution, say exactly which part(s) of the proof go wrong.arrow_forward
- (a) For the following linear programme, sketch the feasible region and the direction of the objective function. Use you sketch to find an optimal solution to the program. State the optimal solution and give the objective value for this solution. maximize +22 subject to 1 + 2x2 ≤ 4, 1 +3x2 ≤ 12, x1, x2 ≥0 (b) For the following linear programme, sketch the feasible region and the direction of the objective function. Explain, making reference to your sketch, why this linear programme is unbounded. maximize ₁+%2 subject to -2x1 + x2 ≤ 4, x1 - 2x2 ≤4, x1 + x2 ≥ 7, x1,x20 Give any feasible solution to the linear programme for which the objective value is 40 (you do not need to justify your answer).arrow_forwardfind the domain of the function f(x)arrow_forwardFor each of the following functions, find the Taylor Series about the indicated center and also determine the interval of convergence for the series. 1. f(x) = ex-2, c = 2 Π == 2. f(x) = sin(x), c = 2arrow_forward
- QUESTION 5. Show that if 0 ≤r≤n, then r+2 r r (c) + (+³) + (+³) +- + (*) -(+) n n+ = r (1)...using induction on n. (2) ...using a combinatorial proof.arrow_forwardUse a power series to approximate each of the following to within 3 decimal places: 1. arctan 2. In (1.01)arrow_forwardFor each of the following power series, find the interval of convergence and the radius of convergence: n² 1.0 (x + 1)" n=1 շո 3n 2. Σ n=1 (x-3)n n3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
