
Interpretation:
The energy released (in kJ) for the given decays and the heat released by the decay of
are to be calculated.
Concept introduction:
The amount of a particular radioactive isotope left after time t is given as:
Here,
is the rate constant for the radioactive decay,
Nearly all radioactive decays are of first order and the rate constant is given as:
Here,
is the half -life of the radioactive substance.
The energy during the decay of a radioactive substance is given as:
Here,
is the amount of energy released,
is the mass defect which occurs during the course of decay and c is the speed of the light.
The mass defect (
) is given as the difference of total atomic mass of the product and the reactant in the balanced radioactive reaction.

Answer to Problem 100AP
Solution:
Explanation of Solution
a) The energy released (in joules) in each of the following two decays
The decay of
The decay of
Mass of
is
Mass of
is
Mass of electron is
Mass of
is
The balanced reaction for
decay is given as follows:
Now, the mass defect
is calculated as follows:
Substitute the values of masses in the above expression.
Now, it is known that
Thus, the conversion factor for this is
Hence, the mass defect can be converted to kilogram unit by using the above conversion factor as follows:
Now, the energy during the decay of a radioactive substance is given as:
Substitute the values of speed of light and energy in the above expression.
Thus, the energy released during the decay of
is
The balanced reaction for
decay is given as follows:
Now, the mass defect
is calculated as follows:
Substitute the values of masses in the above expression.
Now, it is known that
Thus, the conversion factor is
Hence, the mass defect can be converted to kilogram unit by using the above conversion factor as follows:
The energy during the decay of a radioactive substance is given as follows:
Substitute the values of energy and mass defect in the above expression.
Thus, the energy released during the decay of
is
b) The number of moles of
that will decay in a year, starting with 1 mole of
Initial time,
Final time,
It is also known that the rate constant for the radioactive decay is given as follows:
Substitute the value of half-life.
Now, number of moles of
decaying in one year can be calculated as follows:
Here,
is the final number of moles.
Substitute the values of
in the above expression.
Thus, the number of moles that has decayed in one year is calculated as follows:
So, moles of
decayed
c) The amount of heat released (in kJ) corresponding to the
It is known that half- life of
is much shorter than that of
formed from
is converted to
Now, it is known that one mole of particles is equivalent to Avogadro’s number.
Hence, the conversion factor is
Thus, by using the above conversion, the number of nuclei decayed in one year can be calculated as follows:
Now, the total energy released during the decay given in part (a) is as follows:
This energy corresponds to the energy released by one nuclei.
Hence, the conversion factor is
Moreover, it is also known that one kilojoules is equivalent to thousand joules.
Hence, the conversion factor is
Thus, by using the above conversion factor, the energy released in one year can be calculated as follows:
Hence, the heat released by the decay of
Want to see more full solutions like this?
Chapter 20 Solutions
EBK CHEMISTRY
- 1. Using a Model set Build a model for the following compound [CHBRIF] 2. Build another model of the mirror image of your first molecule. 3. Place the two models next to each other and take a picture which shows the differences between the two models. 4. Determine the absolute stereochemistry R or S for the two models. 5. Write or type a paragraph to Discuss the stereochemical relationship between the two models of CHBгCIF. You must provide an explanation for your conclusions also provide a description for the colors used to representarrow_forwardThe specific rotation of a sample depends upon measured angle of rotation, the density of the sample, and the pathway length of the light. True Falsearrow_forwardConsider the molecule A,B, C and D shown below, (1 x 4) Br NH2 A OH Br 边 H B C D 1. Assign the R/S configuration to each chiral center and identify by circling all the chiral centers. 2. Draw an image for the enantiomer of each of the compounds A, B, C and D.arrow_forward
- Could you crystallize one enantiomer of mandelic acid from a racemic mixture (using the typical achiral solvents found in our lab) without preparing a diastereomeric salt? Why or why not? No, because both enantiomers have the same solubility in achiral solvents. than the other. ооо Yes, because one enantiomer has a higher melting point No, because both enantiomers are liquids. Yes, because one enantiomer is more crystalline than the other.arrow_forwardIf the literature value of specific rotation for a chiral compound is -53.6°, what is the enantiomeric excess of a compound with a measured specific rotation of -40.5°?arrow_forwardThe process to determine the configuration, starts by placing the lowest priority substituent toward the back. If the substituents pointing forward decrease in priority in a clockwise order, the configuration is S. If the substituents decrease in priority in a counterclockwise order, the configuration is R. True Falsearrow_forward
- In the drawing area below, create a hemiacetal with 1 hydroxyl group, 1 methoxy group, and a total of 3 carbon atoms. Click and drag to start drawing a structure. Explanation Check Х PO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardPredict the product of the reaction below (3 pts). hydrazine Ph H₂NNH2 KOH Write the mechanism for the above reaction using curved arrows to show electron movements. show all intermediates in the process (7 pts).arrow_forward↓ Feedback (8/10) Draw the major product of this reaction. Ignore inorganic byproducts. Incorrect, 2 attempts remaining N H3O+ 0 × Select to Draw + V Retryarrow_forward
- 2. Calculate the branching ratio of the reaction of the methyl peroxy radical with either HO, NO 298K) (note: rate constant can be found in the tropospheric chemistry ppt CH,O,+NO-HCHO+HO, + NO, CH₂O+HO, CH₂00H +0₂ when the concentration of hydroperoxyl radical is DH01-1.5 x 10 molecules and the nitrogen oxide maxing ratio of 10 ppb when the concentration of hydroperoxyl radicalis [H0] +1.5x10 molecules cm" and the nitrogen oxide mixing ratio of 30 p Under which condition do you expect more formaldehyde to be produced and whyarrow_forwardIndicate the product of the reaction of benzene with 1-chloro-2,2-dimethylpropane in the presence of AlCl3.arrow_forwardIn what position will N-(4-methylphenyl)acetamide be nitrated and what will the compound be called.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




