Elements Of Electromagnetics
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2, Problem 7P

a)

To determine

Convert the F vector to cylindrical and spherical system.

a)

Expert Solution
Check Mark

Explanation of Solution

Given:

F=xaxx2+y2+z2+yayx2+y2+z2+4azx2+y2+z2 . (I).

Calculation:

Write the expression for the vector in Cartesian coordinates system.

  F=Axax+Ayay+Azaz        (II)

Compare the equation (I) and (II).

  Fx=xx2+y2+z2Fy=yx2+y2+z2Fz=zx2+y2+z2

Write the expression for Aρ.Aϕ, andAz in cylindrical form.

  [FρFϕFz]=[cosϕsinϕ0sinϕcosϕ0001][AxAyAz]

Substitute the obtained Ax.Ay, andAz values in the above equation.

  [FρF*Fz]=[cosϕsinϕ0sinϕcosϕ0001][xx2+y2+z2yx2+y2+z24x2+y2+z2]        (III)

Write the variable change of cylindrical to rectangular from table 2.1.

  ρ=x2+y2ρ2=x2+y2

Substitute ρ2=x2+y2        (III)

  [FρF*Fz]=[cosϕsinϕ0sinϕcosϕ0001][xρ2+z2yρ2+z24ρ2+z2]

Solve the above matrix to obtain the cylindrical coordinates.

  Fρ=1ρ2+z2[ρcos2ϕ+ρsin2ϕ]=ρρ2+z2Fo=1ρ2+z2[ρcosϕsinϕ+ρcosϕsinϕ]=0Fz=4ρ2+z2

Write the given F vector in cylindrical form.

  Fρ=1ρ2+z2[ρρ2+z2aρ+0aϕ+4ρ2+z2az]F=1ρ2+z2(ρaρ+4az)

Thus, the given vector in cylindrical form is F=1ρ2+z2(ρaρ+4az).

Similarly write the matrix for the spherical form using Table 2.1.

  [FrFθFϕ]=[sinθcosϕsinθsinϕcosθcosθcosϕcosθsinϕsinϕsinϕcosϕ0][xryr4r]

Solve the above matrix to obtain the spherical coordinates.

  Fr=r2sin2θcos2θ+rrsin2θsin2θ+4rcosθ=sin2θ+4rcosθFθ=sinθcosθcos2θ+sinθcosθ4rcosθ=sinθcosθ4rsinθFϕ=sinθcosϕsinϕ+sinθsinϕcosϕ=0

Write the given F vector in spherical form using the above equations.

  F=(sin2θ+4rsinθ)ar+sinθ(cosθ4r)aθ

Thus, the given vector in spherical form is F=(sin2θ+4rsinθ)ar+sinθ(cosθ4r)aθ.

b)

To determine

Convert the G vector to cylindrical and spherical system.

b)

Expert Solution
Check Mark

Explanation of Solution

Given:

G=(x2+y2)[xaxx2+y2+z2+yayx2+y2+z2+zaxx2+y2+z2]

Calculation:

Write the given vector G.

  G=(x2+y2)[xaxx2+y2+z2+yayx2+y2+z2+zaxx2+y2+z2]G=[x(x2+y2)axx2+y2+z2+y(x2+y2)ayx2+y2+z2+z(x2+y2)axx2+y2+z2]        (IV)

Write the variable change of spherical to rectangular from table 2.1.

  ρ=x2+y2ρ2=x2+y2

Substitute ρ2=x2+y2 in equation (IV).

  G=[x(ρ2)axρ2+z2+y(ρ2)ayρ2+z2+z(ρ2)axρ2+z2]

Write the matrix for the cylindrical form using Table 2.1.

  [GρGϕGz]=[cosϕsinϕ0sinϕcosϕ0001][x(ρ2)ρ2+z2y(ρ2)ρ2+z2z(ρ2)ρ2+z2]

Solve the above matrix to obtain the cylindrical coordinates.

  Gρ=ρ2ρ2+z2[ρcos2ϕ+ρsin2ϕ]=ρ3ρ2+z2

  Gϕ=0

  Gz=zρ2ρ2+z2

Write the given F vector in cylindrical form using the above equations.

  Gz=ρ3ρ2+z2ax+0ay+zρ2ρ2+z2azGz=ρ2ρ2+z2(ρaρ+zaz)

Thus, the given vector in cylindrical form Gz=ρ2ρ2+z2(ρaρ+zaz).

Similarly write the matrix for the spherical form using Table 2.1.

  [GrGθGϕ]=[sinθcosϕsinθsinϕcosθcosθcosϕcosθsinϕsinϕsinϕcosϕ0][xrsinθrysinθrzsinθ]

Solve the above matrix to obtain the spherical coordinates.

  Gr=rsin2θcos2ϕ+rsin2θsin2ϕ+rcos2θsinθ=rsin3θ+rcos2sinθ=rsinθGθ=rsin2θcosθcos2θ+rsin2θcos(sin3ϕ)rsin3θcosθ=rsin2θcosθrsin2cosθ=0Gϕ=rsin2θsinϕcosϕsinϕ+rsin2θcosϕsinϕ=0

Write the given F vector in spherical form using the above equations.

  G=rsinθar+0+0=rsinθar

Thus, the given vector in spherical form is G=rsinθar.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
got wrong answers help please
A crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom cc00 BY NC SA ↑ Z C b B У a D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in 4.5 in The tension in rope AB is 383 x lb The tension in rope AC is 156 x lb The tension in rope AD is 156 x lb
A block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z C D (c, 0, d) (a, 0, b) A B y f m cc 10 BY NC SA 2016 Eric Davishahl x Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m с 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is 68.8 The compressive force in bar AB is 364 × kg. × N. The tension in cable BC is 393 × N.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Engineering: Centroids & Center of Gravity (1 of 35) What is Center of Gravity?; Author: Michel van Biezen;https://www.youtube.com/watch?v=Tkyk-G1rDQg;License: Standard Youtube License