INTRO TO PHYSICAL SCIENCE W/MINDTAP
14th Edition
ISBN: 9781337077026
Author: Shipman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 7AYK
A skydiver uses a parachute to slow the landing speed. Parachutes generally have a hole in the top. Why? Wouldn’t air going through the hole deter the slowing?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Students are asked to use circular motion to measure the
coefficient of static friction between two materials. They
have a round turntable with a surface made from one of
the materials, for which they can vary the speed of rotation.
They also have a small block of mass m made from the sec-
ond material. A rough sketch of the apparatus is shown in
the figure below. Additionally they have equipment normally
found in a physics classroom.
Axis
m
(a) Briefly describe a procedure that would allow you
to use this apparatus to calculate the coefficient of
static friction, u.
(b) Based on your procedure, determine how to
analyze the data collected to calculate the
coefficient of friction.
(c) One group of students collects the following
data.
r (m)
fm (rev/s)
0.050
1.30
0.10
0.88
0.15
0.74
0.20
0.61
0.25
0.58
i. Use the empty spaces in the table as needed to
calculate quantities that would allow you to
use the slope of a line graph to calculate the
coefficient of friction, providing labels with…
Chapter 2 Solutions
INTRO TO PHYSICAL SCIENCE W/MINDTAP
Ch. 2.1 - What is needed to designate a position?Ch. 2.1 - What is motion?Ch. 2.2 - Between two points, which may be greater in...Ch. 2.2 - Prob. 2PQCh. 2.2 - Prob. 2.1CECh. 2.2 - A communications satellite is in a circular orbit...Ch. 2.3 - What is the average speed in mi/h of a person at...Ch. 2.3 - What motional changes produce an acceleration?Ch. 2.3 - Prob. 2PQCh. 2.3 - If the car in the preceding example continues to...
Ch. 2.3 - Prob. 2.5CECh. 2.4 - Prob. 1PQCh. 2.4 - Prob. 2PQCh. 2.4 - Prob. 2.6CECh. 2.5 - Neglecting air resistance, why would a ball...Ch. 2.5 - Prob. 2PQCh. 2 - Visualize the connections and give the descriptive...Ch. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - Prob. CMCh. 2 - Prob. DMCh. 2 - Prob. EMCh. 2 - Prob. FMCh. 2 - Prob. GMCh. 2 - Prob. HMCh. 2 - Prob. IMCh. 2 - Prob. JMCh. 2 - Prob. KMCh. 2 - Prob. LMCh. 2 - Prob. MMCh. 2 - Prob. NMCh. 2 - Prob. OMCh. 2 - Prob. PMCh. 2 - Prob. QMCh. 2 - KEY TERMS 1. physics (intro) 2. position (2.1) 3....Ch. 2 - What is necessary to designate a position? (2.1)...Ch. 2 - Which one of the following describes an object in...Ch. 2 - Which one of the following is always true about...Ch. 2 - Which is true of an object with uniform velocity?...Ch. 2 - Acceleration may result from what? (2.3) (a) an...Ch. 2 - For a constant linear acceleration, what changes...Ch. 2 - Which one of the following is true for a...Ch. 2 - An object is projected straight upward. Neglecting...Ch. 2 - If the speed of an object in uniform circular...Ch. 2 - Neglecting air resistance, which of the following...Ch. 2 - In the absence of air resistance, a projectile...Ch. 2 - A football is thrown on a long pass. Compared to...Ch. 2 - An object is in motion when it undergoes a...Ch. 2 - Speed is a(n) ___ quantity. (2.2)Ch. 2 - Velocity is a(n) ___ quantity. (2.2)Ch. 2 - ___ is the actual path length. (2.2)Ch. 2 - Prob. 5FIBCh. 2 - Prob. 6FIBCh. 2 - The distance traveled by a dropped object...Ch. 2 - Prob. 8FIBCh. 2 - The metric units associated with acceleration are...Ch. 2 - Prob. 10FIBCh. 2 - Prob. 11FIBCh. 2 - Neglecting air resistance, a horizontally thrown...Ch. 2 - What area of physics involves the study of objects...Ch. 2 - What is necessary to designate the position of an...Ch. 2 - How are length and time used to describe motion?Ch. 2 - Prob. 4SACh. 2 - Prob. 5SACh. 2 - How is average speed analogous to an average class...Ch. 2 - A jogger jogs two blocks directly north. (a) How...Ch. 2 - Prob. 8SACh. 2 - The gas pedal of a car is commonly referred to as...Ch. 2 - Does a negative acceleration always mean that an...Ch. 2 - A ball is dropped. Assuming free fall, what is its...Ch. 2 - A vertically projected object has zero velocity at...Ch. 2 - Can a car be moving at a constant speed of 60 km/h...Ch. 2 - What is centripetal about centripetal...Ch. 2 - Are we accelerating as a consequence of the Earth...Ch. 2 - What is the direction of the acceleration vector...Ch. 2 - For projectile motion, what quantities are...Ch. 2 - How do the motions of horizontal projections with...Ch. 2 - Prob. 19SACh. 2 - Can a baseball pitcher throw a fastball in a...Ch. 2 - Figure 2.14(b) shows a multiflash photograph of...Ch. 2 - Taking into account air resistance, how do you...Ch. 2 - Do highway speed limit signs refer to average...Ch. 2 - Prob. 2AYKCh. 2 - What is the direction of the acceleration vector...Ch. 2 - Is an object projected vertically upward in free...Ch. 2 - A student sees her physical science professor...Ch. 2 - How would (a) an updraft affect a skydiver in...Ch. 2 - A skydiver uses a parachute to slow the landing...Ch. 2 - Tractor-trailer rigs often have an airfoil on top...Ch. 2 - A gardener walks in a flower garden as illustrated...Ch. 2 - What is the gardeners displacement (Fig. 2.21)?...Ch. 2 - At a track meet, a runner runs the 100-m dash in...Ch. 2 - A jogger jogs around a circular track with a...Ch. 2 - A space probe on the surface of Mars sends a radio...Ch. 2 - A group of college students eager to get to...Ch. 2 - A student drives the 100-mi trip back to campus...Ch. 2 - A jogger jogs from one end to the other of a...Ch. 2 - An airplane flying directly eastward at a constant...Ch. 2 - A race car traveling northward on a straight,...Ch. 2 - A sprinter starting from rest on a straight, level...Ch. 2 - Modern oil tankers weigh more than a half-million...Ch. 2 - A motorboat starting from rest travels in a...Ch. 2 - A car travels on a straight, level road. (a)...Ch. 2 - A ball is dropped from the top of an 80-m-high...Ch. 2 - What speed does the ball in Exercise 15 have in...Ch. 2 - Figure 1.18 (Chapter 1) shows the Hoover Dam...Ch. 2 - A spaceship hovering over the surface of Mars...Ch. 2 - A person drives a car around a circular, level...Ch. 2 - A race car goes around a circular, level track...Ch. 2 - If you drop an object from a height of 1.5 m, it...Ch. 2 - A golfer on a level fairway hits a ball at an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forward
- Only Part B.) is necessaryarrow_forwardA (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- fine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forwardThree point charges of magnitudes Q₁ = +6.0 μС, Q₂ = −7.0 μС, Qз = −13.0 μC are placed on the x-axis at x = 0 cm, x = 40 cm, and x = 120 cm, respectively. What is the force on the Q3 due to the other two charges?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License