Free Fall on Different Worlds Objects in free fall on the earth have acceleration a y = − 9.8 m/s 2 . On the moon, free-fall acceleration is approximately 1/6 of the acceleration on earth. This changes the scale of problems involving free fall. For instance, suppose you jump straight upward, leaving the ground with velocity v i and then steadily slowing until reaching zero velocity at your highest point. Because your initial velocity is determined mostly by the strength of your leg muscles, we can assume your initial velocity would be the same on the moon. But considering the final equation in Synthesis 2.1 we can see that, with a smaller free-fall acceleration, your maximum height would be greater. The following questions ask you to think about how certain athletic feats might be performed in this reduced-gravity environment. 79. On the earth, an astronaut can safely jump to the ground from a height of 1.0 m; her velocity when reaching the ground is slow enough to not cause injury. From what height could the astronaut safely jump to the ground on the moon? A. 2.4 m B. 6.0m C. 7.2 m D. 36m
Free Fall on Different Worlds Objects in free fall on the earth have acceleration a y = − 9.8 m/s 2 . On the moon, free-fall acceleration is approximately 1/6 of the acceleration on earth. This changes the scale of problems involving free fall. For instance, suppose you jump straight upward, leaving the ground with velocity v i and then steadily slowing until reaching zero velocity at your highest point. Because your initial velocity is determined mostly by the strength of your leg muscles, we can assume your initial velocity would be the same on the moon. But considering the final equation in Synthesis 2.1 we can see that, with a smaller free-fall acceleration, your maximum height would be greater. The following questions ask you to think about how certain athletic feats might be performed in this reduced-gravity environment. 79. On the earth, an astronaut can safely jump to the ground from a height of 1.0 m; her velocity when reaching the ground is slow enough to not cause injury. From what height could the astronaut safely jump to the ground on the moon? A. 2.4 m B. 6.0m C. 7.2 m D. 36m
Objects in free fall on the earth have acceleration ay = − 9.8 m/s2. On the moon, free-fall acceleration is approximately 1/6 of the acceleration on earth. This changes the scale of problems involving free fall. For instance, suppose you jump straight upward, leaving the ground with velocity vi and then steadily slowing until reaching zero velocity at your highest point. Because your initial velocity is determined mostly by the strength of your leg muscles, we can assume your initial velocity would be the same on the moon. But considering the final equation in Synthesis 2.1 we can see that, with a smaller free-fall acceleration, your maximum height would be greater. The following questions ask you to think about how certain athletic feats might be performed in this reduced-gravity environment.
79. On the earth, an astronaut can safely jump to the ground from a height of 1.0 m; her velocity when reaching the ground is slow enough to not cause injury. From what height could the astronaut safely jump to the ground on the moon?
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
No chatgpt pls will upvote
Chapter 2 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.