Concept explainers
(a)
Interpretation:
The number of electrons present in the outer shell of Si should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of Si is 4.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of Si (14) is 1s2 2s2 2p6 3s2 3p2.
On the basis of above electronic configuration, the outermost shell or valence shell is 3s 3p which contains four electrons.
Thus, number of electrons in outermost shell of Si is 4.
(b)
Interpretation:
The number of electrons present in the outer shell of Br should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of Br is 7.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of Br (35) is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5.
On the basis of above electronic configuration, the outermost shell or valence shell is 4s 4p which contains seven electrons.
Thus, number of electrons in outermost shell of Br is 7.
(c)
Interpretation:
The number of electrons present in the outer shell of p should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of p is 5.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of p (15) is 1s2 2s2 2p6 3s2 3p3.
On the basis of above electronic configuration, the outermost shell or valence shell is 3s 3p which contains five electrons.
Thus, number of electrons in outermost shell of p is 5.
(d)
Interpretation:
The number of electrons present in the outer shell of K should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of K is 1.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of K (19) is 1s2 2s2 2p6 3s2 3p6 4s1.
On the basis of above electronic configuration, the outermost shell or valence shell is 4s which contains one electron.
Thus, number of electrons in outermost shell of K is 1.
(e)
Interpretation:
The number of electrons present in the outer shell of He should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of He is 2.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of He (2) is 1s2.
On the basis of above electronic configuration, the outermost shell or valence shell is 1s which contains two electrons.
Thus, number of electrons in outermost shell of He is 2.
(f)
Interpretation:
The number of electrons present in the outer shell of Ca should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of Ca is 2.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of Ca (20) is 1s2 2s2 2p6 3s2 3p6 4s2.
On the basis of above electronic configuration, the outermost shell or valence shell is 4s which contains two electrons.
Thus, number of electrons in outermost shell of Ca is 2.
(g)
Interpretation:
The number of electrons present in the outer shell of Kr should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of Kr is 8.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of Kr (36) is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6.
On the basis of above electronic configuration, the outermost shell or valence shell is 4s 4p which contains eight electrons.
Thus, number of electrons in outermost shell of Kr is 8.
(h)
Interpretation:
The number of electrons present in the outer shell of Pb should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of Pb is 4.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of Pb (82) is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 4f14 5d10 6s2 6p2.
On the basis of above electronic configuration, the outermost shell or valence shell is 6s 6p which contains four electrons.
Thus, number of electrons in outermost shell of Pb is 4.
(i)
Interpretation:
The number of electrons present in the outer shell of Se should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of Se is 6.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of Se (34) is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p4.
On the basis of above electronic configuration, the outermost shell or valence shell is 4s 4p which contains six electrons.
Thus, number of electrons in outermost shell of Se is 6.
(j)
Interpretation:
The number of electrons present in the outer shell of O should be identified.
Concept Introduction:
The protons and neutrons of an atom are present in the nucleus of an atom whereas the electrons are always moving around the nucleus of an atom that is they possess kinetic energy. The lowest possible energy level of an electron in an atom is its ground state.
The electrons are arranged around the nucleus of an atom in an increasing order of energy levels and this description of orbitals of atom occupied by electrons is known as electronic configuration.
Answer to Problem 77P
The number of electrons in outermost shell of O is 6.
Explanation of Solution
Electrons are distributed in the orbitals of the subshell. The specific region of space in which the movement of electrons is confined is said to be shells which are divided into subshells and are s-, p-, d-, and f-. Among these subshells, the electrons are grouped as orbitals.
The number of electrons that these subshells can hold is:
s-block - 2.
p-block - 6.
d-block - 10.
f-block - 14.
The electronic configuration of O (8) is 1s2 2s2 2p4.
On the basis of above electronic configuration, the outermost shell or valence shell is 2s 2p which contains six electrons.
Thus, number of electrons in outermost shell of O is 6.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction to General, Organic and Biochemistry
- Please correct answer and don't used hand raitingarrow_forwardIn an induced absorption process:a) the population of the fundamental state is diminishingb) the population of the excited state decreasesc) the non-radiating component is the predominant oned) the emission radiation is consistentarrow_forwardhow a - Cyanostilbenes are made? provide 3 different methods for their synthesisarrow_forward
- 3.3 Consider the variation of molar Gibbs energy with pressure. 3.3.1 Write the mathematical expression for the slope of graph of molar Gibbs energy against 3.3.2 pressure at constant temperature. Draw in same diagram graphs showing variation with pressure of molar Gibbs energies of a substance in gaseous, liquid and solid forms at constant temperature. 3.3.3 Indicate in your graphs melting and boiling points. 3.3.4 Indicate for the respective phases the regions of relative stability.arrow_forwardIn 2-chloropropane, the signal for the H on the C next to Cl should be split into how many peaks?arrow_forward4.4 Consider as perfect gas 3.0 mol of argon gas to which 229 J of energy is supplied as heat at constant pressure and temperature increases by 2.55 K. Calculate 4.4.1 constant pressure molar heat capacity. 4.4.2 constant volume molar heat capacity.arrow_forward
- 3.2 32 Consider calibrating a calorimeter and measuring heat transferred. A sample of compound was burned in a calorimeter and a temperature change of 3.33°C recorded. When a 1.23 A current from a 12.0 V source was passed through a heater in the same calorimeter for 156 s, the temperature changed of 4.47°C was recorded. 3.2.1 Calculate the heat supplied by the heater. 3.2.2 Calculate the calorimeter constant. 3.2.3 Calculate the heat released by the combustion reaction.arrow_forward-.1 Consider the standard enthalpy of formation of gaseous water at 25°C as -241.82 kJ/mol and calculate the standard enthalpy of formation of gaseous water at 100°C.arrow_forward3.5 Complete the following sentences to make correct scientific meaning. 3.5.1 The entropy of a perfect gas. 3.5.2 when it expands isothermally. The change in entropy of a substance accompanying a change of state at its transition 3.5.3 temperature is calculated from its of transition. The increase in entropy when a substance is heated is calculated from itsarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning