A Thomson's gazelle can run at very high speeds, but its acceleration is relatively modest. A reasonable model for the sprint of a gazelle assumes an acceleration of 4.2 m/s 2 for 6.5 s, after which the gazelle continues at a steady speed. a. What is the gazelle's top speed? b. A human would win a very short race with a gazelle. The best time for a 30 m sprint for a human runner is 3.6 s. How much time would the gazelle take for a 30 m race? c. A gazelle would win a longer race. The best time for a 200m sprint for a human runner is 19.3 s. How much time would the gazelle take for a 200m race?
A Thomson's gazelle can run at very high speeds, but its acceleration is relatively modest. A reasonable model for the sprint of a gazelle assumes an acceleration of 4.2 m/s 2 for 6.5 s, after which the gazelle continues at a steady speed. a. What is the gazelle's top speed? b. A human would win a very short race with a gazelle. The best time for a 30 m sprint for a human runner is 3.6 s. How much time would the gazelle take for a 30 m race? c. A gazelle would win a longer race. The best time for a 200m sprint for a human runner is 19.3 s. How much time would the gazelle take for a 200m race?
A Thomson's gazelle can run at very high speeds, but its acceleration is relatively modest. A reasonable model for the sprint of a gazelle assumes an acceleration of 4.2 m/s2 for 6.5 s, after which the gazelle continues at a steady speed.
a. What is the gazelle's top speed?
b. A human would win a very short race with a gazelle. The best time for a 30 m sprint for a human runner is 3.6 s. How much time would the gazelle take for a 30 m race?
c. A gazelle would win a longer race. The best time for a 200m sprint for a human runner is 19.3 s. How much time would the gazelle take for a 200m race?
Three point-like charges are placed at the corners of a square as shown in the figure, 28.0
cm on each side. Find the minimum amount of work required by an external force to move
the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.
A point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x= 0.820 mm . Find the magnitude and direction of the electric field at each of the following points on the x axis.
x2 = 19.0 cm
Four point-like charges are placed as shown in the figure, three of them are at the corners
and one at the center of a square, 36.0 cm on each side. What is the electric potential at
the empty corner? Let q1=q3=+26.0 µС, q2=-28.0 μC, and q4=-48.0μc
V
Chapter 2 Solutions
Pearson eText for College Physics: A Strategic Approach -- Instant Access (Pearson+)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.