College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 76GP
The minimum stopping distance for a car traveling at a speed of 30 m/s is 60 m, including the distance traveled during the driver's reaction time of 0.50 s.
a. Draw a position-versus-time graph for the motion of the car. Assume the car is at xi = 0 m when the driver first sees the emergency situation ahead that calls for a rapid halt.
b. What is the minimum stopping distance for the same car traveling at a speed of 40 m/s?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The minimum stopping distance for a car traveling at a speed of 30 m/s is 60 m, including the distance traveled during the driver’s reaction time of 0.50 s. a. Draw a position-versus-time graph for the motion of the car. Assume the car is at xi = 0 m when the driver first sees the emergency situation ahead that calls for a rapid halt. b. What is the minimum stopping distance for the same car traveling at a speed of 40 m/s?
You are traveling on an interstate highway at the posted speed limit of 70 mph when you see that the traffic in front of you has stopped due to an accident up ahead. You step on your brakes to slow down as quickly as possible. Assume that you to slow down to 30 mph in about 5 seconds.
a. What is the magnitude of the average acceleration of the car while it is slowing down?
Express your answer in feet per second squared.
b. With this same average acceleration, how much longer would it take you to stop?
c. What total distance would you travel from when you first apply the brakes until the car stops?
Express your answer in feet.
The position (in meters) of an object is given as a function of time by the equation:
x(t) = 2t^3 - 3t^2 +t-6
a.What is the initial position of the object (that is, at t=0) and What is the position after 3 seconds?
b.What is the average velocity of this object over the first 3 seconds? and Write an equation for the instantaneous velocity of this object
c.What is the initial velocity of this object (that is, at t=0) and What is the velocity of this object at 3 seconds? Also find the average acceleration for this object over the first three seconds?
Please answer it completetely.
Chapter 2 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 2 - A person gets in an elevator on the ground floor...Ch. 2 - a. Give an example of a vertical motion with a...Ch. 2 - Figure Q2.3 shows growth rings in the trunk of a...Ch. 2 - Sketch a velocity-versus-time graph for a rock...Ch. 2 - You are driving down the road at a constant speed....Ch. 2 - A car is traveling north. Can its acceleration...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight down from...Ch. 2 - Figure Q2.10 shows an object's...Ch. 2 - Figure Q2.11 shows the position graph for an...
Ch. 2 - Figure Q2.12 shows the position-versus-time graphs...Ch. 2 - Figure Q2.13 shows a position-versus-time graph....Ch. 2 - Figure Q2.14 is the velocity-versus-time graph for...Ch. 2 - Figure Q2.15 shows the position graph of a car...Ch. 2 - Figure Q2.16 shows the position graph of a car...Ch. 2 - Figure Q2.17 shows an object's...Ch. 2 - The following options describe the motion of four...Ch. 2 - A car is traveling at Vx = 20 m/s. The driver...Ch. 2 - Velocity-versus-time graphs for three drag racers...Ch. 2 - Which of the three drag racers in Question 20 had...Ch. 2 - Chris is holding two softballs while standing on a...Ch. 2 - Suppose a plane accelerates from rest for 30 s,...Ch. 2 - Figure Q2.24 shows a motion diagram with the clock...Ch. 2 - A car can go from 0 to 60 mph in 7.0 s. Assuming...Ch. 2 - A car can go from 0 to 60 mph in 12 s. A second...Ch. 2 - Figure P2.1 shows a motion diagram of a car...Ch. 2 - For each motion diagram in Figure P2.2, determine...Ch. 2 - The position graph of Figure P2.3 shows a dog...Ch. 2 - A rural mail carrier is driving slowly, putting...Ch. 2 - For the velocity-versus-time graph of Figure P2.5:...Ch. 2 - A bicyclist has the position-versus-time graph...Ch. 2 - In major league baseball, the pitcher's mound is...Ch. 2 - In college softball, the distance from the...Ch. 2 - Alan leaves Los Angeles at 8:00am to drive to San...Ch. 2 - Richard is driving home to visit his parents. 125...Ch. 2 - In a 5.00 km race, one runner runs at a steady...Ch. 2 - In an 8.00 km race, one runner runs at a steady...Ch. 2 - A car moves with constant velocity along a...Ch. 2 - While running a marathon, a long-distance runner...Ch. 2 - Figure P2.1 shows the position graph of a...Ch. 2 - A somewhat idealized graph of the speed of the...Ch. 2 - A car starts from Xi = 10 m at ti = 0 s and moves...Ch. 2 - Figure P2.18 shows a graph of actual...Ch. 2 - Figure P2.19 shows the velocity graph of a...Ch. 2 - We set the origin of a coordinate system so that...Ch. 2 - For each motion diagram shown earlier in Figure...Ch. 2 - Figure P2.16 showed data for the speed of blood in...Ch. 2 - Figure P2.23 is a somewhat simplified velocity...Ch. 2 - Small frogs that are good jumpers are capable of...Ch. 2 - A Thomson's gazelle can reach a speed of 13 m/s in...Ch. 2 - When striking, the pike, a predatory fish, can...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - When jumping, a flea rapidly extends its legs,...Ch. 2 - A car traveling at speed v takes distance d to...Ch. 2 - Light-rail passenger trains that provide...Ch. 2 - A cross-country skier is skiing along at a zippy...Ch. 2 - A small propeller airplane can comfortably achieve...Ch. 2 - Formula One racers speed up much more quickly than...Ch. 2 - Figure P2.34 shows a velocity-versus-time graph...Ch. 2 - A driver has a reaction time of 0.50 s, and the...Ch. 2 - Chameleons catch insects with their tongues, which...Ch. 2 - You're driving down the highway late one night at...Ch. 2 - A light-rail train going from one station to the...Ch. 2 - A car is traveling at a steady 80 km/h in a 50...Ch. 2 - When a jet lands on an aircraft carrier, a hook on...Ch. 2 - A simple model for a person running the 100m dash...Ch. 2 - Ball bearings can be made by letting spherical...Ch. 2 - Here's an interesting challenge you can give to a...Ch. 2 - In the preceding problem we saw that a person's...Ch. 2 - A gannet is a seabird that fishes by diving from a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Excellent human jumpers can leap straight up to a...Ch. 2 - A football is kicked straight up into the air; it...Ch. 2 - In an action movie, the villain is rescued from...Ch. 2 - Spud Webb was, at 5 ft 8 in, one of the shortest...Ch. 2 - A rock climber stands on top of a 50-m-high cliff...Ch. 2 - Actual velocity data for a lion pursuing prey are...Ch. 2 - A truck driver has a shipment of apples to deliver...Ch. 2 - When you sneeze, the air in your lungs accelerates...Ch. 2 - Figure P2.55 shows the motion diagram, made at two...Ch. 2 - Julie drives 100 mi to Grandmother's house. On the...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - Does a real automobile have constant acceleration?...Ch. 2 - People hoping to travel to other worlds are faced...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - When you blink your eye, the upper lid goes from...Ch. 2 - A bush baby, an African primate, is capable of a...Ch. 2 - When jumping, a flea reaches a takeoff speed of...Ch. 2 - Certain insects can achieve seemingly impossible...Ch. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up with a speed of 20...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A hotel elevator ascends 200m with a maximum speed...Ch. 2 - A car starts from rest at a stop sign. It...Ch. 2 - A toy train is pushed forward and released at xi =...Ch. 2 - Heather and Jerry are standing on a bridge 50 m...Ch. 2 - A Thomson's gazelle can run at very high speeds,...Ch. 2 - We've seen that a man's higher initial...Ch. 2 - A pole-vaulter is nearly motionless as he clears...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Free Fall on Different Worlds Objects in free fall...Ch. 2 - Free Fall on Different Worlds Objects in free fall...Ch. 2 - Free Fall on Different Worlds Objects in free fall...
Additional Science Textbook Solutions
Find more solutions based on key concepts
16.11 A 60.0-m-long brass rod is struck at one end. A person at the other end hears two sounds as a result of t...
University Physics (14th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
What is the volume of one mole of air, at room temperature and 1 atm pressure?
An Introduction to Thermal Physics
(a) A pendulum that has a period of 3.00000 s and that is located where the acceleration due to gravity is 9.79...
University Physics Volume 1
(a) How much energy is stored in the electrical fields in the capacitors (in total) shown below? (b) Is this en...
University Physics Volume 2
A rock’s type (igneous, metamorphic, or sedimentary) tells us (a) its age; (b) its chemical composition; (c) ho...
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An object is at x = 0 at t = 0 and moves along the x axis according to the velocitytime graph in Figure P2.40. (a) What is the objects acceleration between 0 and 4.0 s? (b) What is the objects acceleration between 4.0 s and 9.0 s? (c) What is the objects acceleration between 13.0 s and 18.0 s? (d) At what time(s) is the object moving with the lowest speed? (e) At what time is the object farthest from x = 0? (f) What is the final position x of the object at t = 18.0 s? (g) Through what total distance has the object moved between t = 0 and t = 18.0 s? Figure P2.40arrow_forward(a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff with an initial velocity of 8.00 m/s. (b) How long would it take to reach the ground if it is thrown straight down with the same speed?arrow_forwardA speedboat travels in a straight line and increases in speed uniformly from i = 20.0 m/s to f = 30.0 m/s in displacement x of 200 m. We wish to find the time interval required for the boat to move through this displacement, (a) Draw a coordinate system for this situation, (b) What analysis model is most appropriate for describing this situation? (c) From the analysis model, what equation is most appropriate for finding the acceleration of the speedboat? (d) Solve the equation selected in part (c) symbolically for the boats acceleration in terms of i, f, and x. (e) Substitute numerical values lo obtain the acceleration numerically. (f) Find the time interval mentioned above.arrow_forward
- A motorist drives for 35.0 minutes at 85.0 km/h and then stops for 15.0 minutes. He then continues north, traveling 130. Km in 2.00 h. (a) What is his total displacement? (b) What is his average velocity?arrow_forwardA swan on a lake gets airborne by flapping its wings and running on top of the water. (a) If the swan must reach a velocity of 6.00 m/s to take off and it accelerates from rest at an average rate of 0.35m/s2 , how far will it travel before becoming airborne? (b) How long does this take?arrow_forwardThere is a 250-m-high cliff at Half Dome in Yosemite National Park in California. Suppose a boulder breaks loose from the top of this cliff. (a) How fast will it be going when it strikes the ground? (b) Assuming a reaction time of 0.300 s, how long will a tourist at the bottom have to get out of the way after hearing the sound of the rock breaking loose (neglecting the height of the tourist, which would become negligible anyway if hit)? The speed of sound is 335 m/s on this day.arrow_forward
- The Acela is an electric train on the WashingtonNew YorkBoston run, carrying passengers at 170 mi/h. A velocitytime graph for the Acela is shown in Figure P2.46. (a) Describe the trains motion in each successive time interval. (b) Find the trains peak positive acceleration in the motion graphed. (c) Find the trains displacement in miles between t = 0 and t = 200 s. Figure P2.46 Velocity versus time graph for the Acela.arrow_forwardAn express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of 0.150 m/s2 as it goes through. The station is 210 m long. (a) How long is the nose of the train in the station? (b) How fast is it going when the nose leaves the station? (c) If the train is 130 m long, when does the end of the train leave the station? (d) What is the velocity of the end of the train as it leaves?arrow_forwardAn unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full stop after compressing the padding and his body 0.350 m. (a) What is his deceleration? (b) How long does the collision last?arrow_forward
- Standing at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a height of 105 m. He can't see the rock right away but then does, 1.50 s later. (a) How far above the hiker is the rock when he can see it? (b) How much time does he have to move before the rock hits his head?arrow_forwardAn object that moves in one dimension has the velocity-versus-time graph shown in Figure P2.52. At time t = 0, the object has position x = 0. a. At time t = 5 s. is the acceleration of the object positive, negative, or zero? Explain. b. At time t = 8 s, is the object speeding up, showing down, or moving with constant speed? Explain. c. Write an expression for the position of the object as a function of time. Explain how you use the graph to obtain your answer. d. Use your expression from part (c) to determine the time (if any) at which the object reaches its maximum position. Check your results by examining the graph. Hint: To get started with finding the maximum of a function, take the derivative and set it equal to zero.arrow_forwardA truck on a straight road starts from rest, accelerating at 2.00 m/s2 until it reaches a speed of 20.0 m/s. Then the truck travels for 20.0 s at constant speed until the brakes are applied, stopping the truck in a uniform manner in an additional 5.00 s. (a) How long is the truck in motion? (b) What is the average velocity of the truck for the motion described?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY