We've seen that a man's higher initial acceleration means that a man can outrun a horse over a very short race. A simple—but plausible—model for a sprint by a man and a horse uses the following assumptions: The man accelerates at 6.0 m/s 2 for 1.8 s and then runs at a constant speed. A horse accelerates at a more modest 5.0 m/s 2 but continues accelerating for 4.8 s and then continues at a constant speed. A man and a horse are competing in a 200 m race. The man is given a 100 m head start, so he begins 100 m from the finish line. How much time does the man take to complete the race? How much time does the horse take? Who wins the race?
We've seen that a man's higher initial acceleration means that a man can outrun a horse over a very short race. A simple—but plausible—model for a sprint by a man and a horse uses the following assumptions: The man accelerates at 6.0 m/s 2 for 1.8 s and then runs at a constant speed. A horse accelerates at a more modest 5.0 m/s 2 but continues accelerating for 4.8 s and then continues at a constant speed. A man and a horse are competing in a 200 m race. The man is given a 100 m head start, so he begins 100 m from the finish line. How much time does the man take to complete the race? How much time does the horse take? Who wins the race?
We've seen that a man's higher initial acceleration means that a man can outrun a horse over a very short race. A simple—but plausible—model for a sprint by a man and a horse uses the following assumptions: The man accelerates at 6.0 m/s2 for 1.8 s and then runs at a constant speed. A horse accelerates at a more modest 5.0 m/s2 but continues accelerating for 4.8 s and then continues at a constant speed. A man and a horse are competing in a 200 m race. The man is given a 100 m head start, so he begins 100 m from the finish line. How much time does the man take to complete the race? How much time does the horse take? Who wins the race?
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Make sure to draw a Free Body Diagram as well
Chapter 2 Solutions
College Physics: A Strategic Approach Technology Update, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.