
College Physics: A Strategic Approach Technology Update, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (3rd Edition)
3rd Edition
ISBN: 9780134201979
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 17P
A car starts from Xi = 10 m at ti = 0 s and moves with the velocity graph shown in Figure P2.17.
Figure P2.17
a. What is the car's position at t = 2 s, 3 s, and 4 s?
b. Does this car ever change direction? If so, at what time?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
please help with this question asap!!! in detail
please answer this asap!!!!
RT = 4.7E-30
18V
IT = 2.3E-3A+
12
38Ω
ли
56Ω
ли
r5
27Ω
ли
r3
28Ω
r4
> 75Ω
r6
600
0.343V
75.8A
Now figure out how much current in going through the r4
resistor.
|4 =
unit
And then use that current to find the voltage drop across the r
resistor.
V4
=
unit
Chapter 2 Solutions
College Physics: A Strategic Approach Technology Update, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (3rd Edition)
Ch. 2 - A person gets in an elevator on the ground floor...Ch. 2 - a. Give an example of a vertical motion with a...Ch. 2 - Figure Q2.3 shows growth rings in the trunk of a...Ch. 2 - Sketch a velocity-versus-time graph for a rock...Ch. 2 - You are driving down the road at a constant speed....Ch. 2 - A car is traveling north. Can its acceleration...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight down from...Ch. 2 - Figure Q2.10 shows an object's...Ch. 2 - Figure Q2.11 shows the position graph for an...
Ch. 2 - Figure Q2.12 shows the position-versus-time graphs...Ch. 2 - Figure Q2.13 shows a position-versus-time graph....Ch. 2 - Figure Q2.14 is the velocity-versus-time graph for...Ch. 2 - Figure Q2.15 shows the position graph of a car...Ch. 2 - Figure Q2.16 shows the position graph of a car...Ch. 2 - Figure Q2.17 shows an object's...Ch. 2 - The following options describe the motion of four...Ch. 2 - A car is traveling at Vx = 20 m/s. The driver...Ch. 2 - Velocity-versus-time graphs for three drag racers...Ch. 2 - Which of the three drag racers in Question 20 had...Ch. 2 - Chris is holding two softballs while standing on a...Ch. 2 - Suppose a plane accelerates from rest for 30 s,...Ch. 2 - Figure Q2.24 shows a motion diagram with the clock...Ch. 2 - A car can go from 0 to 60 mph in 7.0 s. Assuming...Ch. 2 - A car can go from 0 to 60 mph in 12 s. A second...Ch. 2 - Figure P2.1 shows a motion diagram of a car...Ch. 2 - For each motion diagram in Figure P2.2, determine...Ch. 2 - The position graph of Figure P2.3 shows a dog...Ch. 2 - A rural mail carrier is driving slowly, putting...Ch. 2 - For the velocity-versus-time graph of Figure P2.5:...Ch. 2 - A bicyclist has the position-versus-time graph...Ch. 2 - In major league baseball, the pitcher's mound is...Ch. 2 - In college softball, the distance from the...Ch. 2 - Alan leaves Los Angeles at 8:00am to drive to San...Ch. 2 - Richard is driving home to visit his parents. 125...Ch. 2 - In a 5.00 km race, one runner runs at a steady...Ch. 2 - In an 8.00 km race, one runner runs at a steady...Ch. 2 - A car moves with constant velocity along a...Ch. 2 - While running a marathon, a long-distance runner...Ch. 2 - Figure P2.1 shows the position graph of a...Ch. 2 - A somewhat idealized graph of the speed of the...Ch. 2 - A car starts from Xi = 10 m at ti = 0 s and moves...Ch. 2 - Figure P2.18 shows a graph of actual...Ch. 2 - Figure P2.19 shows the velocity graph of a...Ch. 2 - We set the origin of a coordinate system so that...Ch. 2 - For each motion diagram shown earlier in Figure...Ch. 2 - Figure P2.16 showed data for the speed of blood in...Ch. 2 - Figure P2.23 is a somewhat simplified velocity...Ch. 2 - Small frogs that are good jumpers are capable of...Ch. 2 - A Thomson's gazelle can reach a speed of 13 m/s in...Ch. 2 - When striking, the pike, a predatory fish, can...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - When jumping, a flea rapidly extends its legs,...Ch. 2 - A car traveling at speed v takes distance d to...Ch. 2 - Light-rail passenger trains that provide...Ch. 2 - A cross-country skier is skiing along at a zippy...Ch. 2 - A small propeller airplane can comfortably achieve...Ch. 2 - Formula One racers speed up much more quickly than...Ch. 2 - Figure P2.34 shows a velocity-versus-time graph...Ch. 2 - A driver has a reaction time of 0.50 s, and the...Ch. 2 - Chameleons catch insects with their tongues, which...Ch. 2 - You're driving down the highway late one night at...Ch. 2 - A light-rail train going from one station to the...Ch. 2 - A car is traveling at a steady 80 km/h in a 50...Ch. 2 - When a jet lands on an aircraft carrier, a hook on...Ch. 2 - A simple model for a person running the 100m dash...Ch. 2 - Ball bearings can be made by letting spherical...Ch. 2 - Here's an interesting challenge you can give to a...Ch. 2 - In the preceding problem we saw that a person's...Ch. 2 - A gannet is a seabird that fishes by diving from a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Excellent human jumpers can leap straight up to a...Ch. 2 - A football is kicked straight up into the air; it...Ch. 2 - In an action movie, the villain is rescued from...Ch. 2 - Spud Webb was, at 5 ft 8 in, one of the shortest...Ch. 2 - A rock climber stands on top of a 50-m-high cliff...Ch. 2 - Actual velocity data for a lion pursuing prey are...Ch. 2 - A truck driver has a shipment of apples to deliver...Ch. 2 - When you sneeze, the air in your lungs accelerates...Ch. 2 - Figure P2.55 shows the motion diagram, made at two...Ch. 2 - Julie drives 100 mi to Grandmother's house. On the...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - Does a real automobile have constant acceleration?...Ch. 2 - People hoping to travel to other worlds are faced...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - When you blink your eye, the upper lid goes from...Ch. 2 - A bush baby, an African primate, is capable of a...Ch. 2 - When jumping, a flea reaches a takeoff speed of...Ch. 2 - Certain insects can achieve seemingly impossible...Ch. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up with a speed of 20...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A hotel elevator ascends 200m with a maximum speed...Ch. 2 - A car starts from rest at a stop sign. It...Ch. 2 - A toy train is pushed forward and released at xi =...Ch. 2 - Heather and Jerry are standing on a bridge 50 m...Ch. 2 - A Thomson's gazelle can run at very high speeds,...Ch. 2 - We've seen that a man's higher initial...Ch. 2 - A pole-vaulter is nearly motionless as he clears...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Free Fall on Different Worlds Objects in free fall...Ch. 2 - Free Fall on Different Worlds Objects in free fall...Ch. 2 - Free Fall on Different Worlds Objects in free fall...
Additional Science Textbook Solutions
Find more solutions based on key concepts
78. A breaker of nitric acid is neutralized with calcium hydroxide. Write a balanced molecular equation and a n...
Introductory Chemistry (6th Edition)
What terms are used to describe organisms whose growth pH optimum is very high? Very low?
Brock Biology of Microorganisms (15th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
WHAT IF? Is allopatric speciation more likely to occur on an island close to a mainland or on a more isolated i...
Campbell Biology in Focus (2nd Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forward
- A small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forwardA small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forwardTICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forward
- The 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forwardImagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.arrow_forwardIf a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexamplearrow_forward
- A futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their accelerationarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY