EBK PHYSICS FOR SCIENTISTS AND ENGINEER
1st Edition
ISBN: 9780100546714
Author: Katz
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 72PQ
Two cars leave Seattle at the same time en route to Boston on Interstate 90. The first car moves uniformly the whole way, with constant speed v. The second car travels with constant speed (v + 1) mph for the first half of the distance and travels with constant speed (v – 1) mph for the second half of the distance. Which car gets to Boston first (or is it a tie)? Explain your reasoning.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Chapter 2 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 2.2 - In each of the five motion diagrams shown in...Ch. 2.3 - For each of the following, give the vector...Ch. 2.5 - Figure 2.11 shows the motion of various objects:...Ch. 2.6 - The top marathon runners complete the race in...Ch. 2.6 - In our everyday experience, we sometimes use the...Ch. 2.6 - Prob. 2.6CECh. 2.8 - Kinematics graphs are great for showing how a...Ch. 2 - Is the Moons motion around the Earth...Ch. 2 - An animals tracks are frozen in the snow (Fig....Ch. 2 - Problems 3 and 12 are paired. G A particle moves...
Ch. 2 - Prob. 4PQCh. 2 - For each of the following velocity vectors, give...Ch. 2 - In the traditional Hansel and Gretel fable, the...Ch. 2 - After a long and grueling race, two cadets, A and...Ch. 2 - Prob. 8PQCh. 2 - Elisha Graves Otis invented the elevator brake in...Ch. 2 - As shown in Figure 2.9, Whipple chose a coordinate...Ch. 2 - Prob. 11PQCh. 2 - Prob. 12PQCh. 2 - A race car travels 825 km around a circular sprint...Ch. 2 - Prob. 14PQCh. 2 - A train leaving Albuquerque travels 293 miles, due...Ch. 2 - Prob. 16PQCh. 2 - The position of a particle attached to a vertical...Ch. 2 - Prob. 18PQCh. 2 - Prob. 19PQCh. 2 - Prob. 20PQCh. 2 - During a relay race, you run the first leg of the...Ch. 2 - Prob. 22PQCh. 2 - Prob. 23PQCh. 2 - Prob. 24PQCh. 2 - During a thunderstorm, a frightened child is...Ch. 2 - Scientists and engineers must interpret problems...Ch. 2 - Prob. 27PQCh. 2 - Prob. 28PQCh. 2 - A In attempting to break one of his many swimming...Ch. 2 - A The instantaneous speed of a particle moving...Ch. 2 - A particles velocity is given by vy(t)=atj, where...Ch. 2 - Prob. 32PQCh. 2 - Figure P2.33 shows the y-position (in blue) of a...Ch. 2 - A particles position is given by z(t) = (7.50...Ch. 2 - Prob. 35PQCh. 2 - Two sprinters start a race along a straight track...Ch. 2 - An electronic line judge camera captures the...Ch. 2 - During a bungee jump, a student (i) initially...Ch. 2 - Prob. 39PQCh. 2 - Prob. 40PQCh. 2 - Prob. 41PQCh. 2 - Prob. 42PQCh. 2 - Prob. 43PQCh. 2 - Prob. 44PQCh. 2 - A computer system, using a preset coordinate...Ch. 2 - In Example 2.6, we considered a simple model for a...Ch. 2 - A uniformly accelerating rocket is found to have a...Ch. 2 - Prob. 48PQCh. 2 - A driver uniformly accelerates his car such that...Ch. 2 - Car A and car B travel in the same direction along...Ch. 2 - Accelerating uniformly to overtake a slow-moving...Ch. 2 - An object that moves in one dimension has the...Ch. 2 - A particle moves along the positive x axis with a...Ch. 2 - Case Study Crall and Whipple attached a fan to a...Ch. 2 - Prob. 55PQCh. 2 - The engineer of an intercity train observes a rock...Ch. 2 - A pebble is thrown downward from a 44.0-m-high...Ch. 2 - In a cartoon program, Peter tosses his baby,...Ch. 2 - Tadeh launches a model rocket straight up from his...Ch. 2 - Prob. 60PQCh. 2 - In the movie Star Wars: The Empire Strikes Back,...Ch. 2 - A worker tosses bricks one by one to a coworker on...Ch. 2 - A rock is thrown straight up into the air with an...Ch. 2 - Prob. 64PQCh. 2 - A sounding rocket, launched vertically upward with...Ch. 2 - Prob. 66PQCh. 2 - While strolling downtown on a Saturday Afternoon,...Ch. 2 - Prob. 68PQCh. 2 - A trooper is moving due south along the freeway at...Ch. 2 - A dancer moves in one dimension back and forth...Ch. 2 - The electrical impulse initiated by the nerves in...Ch. 2 - Two cars leave Seattle at the same time en route...Ch. 2 - An object begins to move along the y axis and its...Ch. 2 - Prob. 74PQCh. 2 - Prob. 75PQCh. 2 - Two carts are set in motion at t = 0 on a...Ch. 2 - Prob. 77PQCh. 2 - Cars A and B each move to the right with constant...Ch. 2 - Prob. 79PQCh. 2 - Prob. 80PQCh. 2 - Prob. 82PQCh. 2 - Prob. 83PQCh. 2 - A Write expressions for the average acceleration...Ch. 2 - Prob. 85PQCh. 2 - Prob. 86PQCh. 2 - In 1898, the world land speed record was set by...Ch. 2 - In Example 2.12, two circus performers rehearse a...Ch. 2 - Prob. 89PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…arrow_forwardPART Aarrow_forwardanswer both questionarrow_forward
- Only part A.) of the questionarrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY