Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 71P
Two divers jump from a 3.00-m platform. One jumps upward at 1.80 m/s, and the second steps off the platform as the first passes it on the way down, (a) What are their speeds as they hit the water? (b) Which hits the water first and by how much?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
need help on first part
its not 220
No chatgpt pls will upvote
No chatgpt pls
Chapter 2 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 2.1 - We just described three trips from Houston to Des...Ch. 2.2 - The figures show position-versus-time graphs for...Ch. 2.3 - An elevator is going up at constant speed, slows...Ch. 2.5 - Standing on a roof, you simultaneously throw one...Ch. 2.6 - The graph shows acceleration versus time for three...Ch. 2 - Under what conditions are average and...Ch. 2 - Does a speedometer measure speed or velocity?Ch. 2 - You check your odometer at the beginning of a days...Ch. 2 - Consider two possible definitions of average...Ch. 2 - Is it possible to be at position x = 0 and still...
Ch. 2 - Is it possible to have zero velocity and still be...Ch. 2 - If you know the initial velocity v0 and the...Ch. 2 - Starting from rest, an object undergoes...Ch. 2 - In which of the velocity-versus-time graphs shown...Ch. 2 - If you travel in a straight line at 50 km/h for 1...Ch. 2 - If you travel in a straight line at 50 km/h for 50...Ch. 2 - In 2009, Usain Bolt of Jamaica set a world record...Ch. 2 - The standard 26-mile, 385-yard marathon dates to...Ch. 2 - Starting front home, you bicycle 24 km north in...Ch. 2 - The Voyager 1 spacecraft is expected to continue...Ch. 2 - In 2008, Australian Emma Snowsill set an...Ch. 2 - Taking Earths orbit to be a circle of radius 1.5 ...Ch. 2 - Whats the conversion factor from meters per second...Ch. 2 - On a single graph, plot distance versus time for...Ch. 2 - For the motion plotted in Fig. 2.15, estimate (a)...Ch. 2 - A model rocket is launched straight upward. Its...Ch. 2 - A giant eruption on the Sun propels solar material...Ch. 2 - Starting from rest, a subway train first...Ch. 2 - A space shuttles main engines cut off 8.5 min...Ch. 2 - An egg drops from a second-story window, taking...Ch. 2 - An airplanes takeoff speed is 320 km/h. If its...Ch. 2 - ThrustSSC, the worlds first supersonic car,...Ch. 2 - Youre driving at 70 km/h when you apply constant...Ch. 2 - Prob. 29ECh. 2 - An X-ray tube gives electrons constant...Ch. 2 - A rocket rises with constant acceleration to an...Ch. 2 - Starting from rest, a car accelerates at a...Ch. 2 - A car moving initially at 50 mi/h begins slowing...Ch. 2 - In a medical X-ray tube, electrons are accelerated...Ch. 2 - Californias Bay Area Rapid Transit System (BART)...Ch. 2 - Youre driving at speed v0 when you spot a...Ch. 2 - You drop a rock into a deep well and 4.4 s later...Ch. 2 - Your friend is sitting 6.5 m above you on a tree...Ch. 2 - A model rocket leaves the ground, heading straight...Ch. 2 - A foul ball leaves the bat going straight up at 23...Ch. 2 - A Frisbee is lodged in a tree 6.5 m above the...Ch. 2 - Space pirates kidnap an earthling and hold him on...Ch. 2 - You allow 40 min to drive 25 mi to the airport,...Ch. 2 - A base runner can get from first to second base in...Ch. 2 - You can run 9.0 m/s, 20% faster than your brother....Ch. 2 - A jetliner leaves San Francisco for New York, 4600...Ch. 2 - An objects position is given by x = bt + ct3 where...Ch. 2 - An objects position as a function of time t is...Ch. 2 - In a drag race, the position of a car as a...Ch. 2 - Squaring Equation 2.7 gives an expression for v2....Ch. 2 - During the complicated sequence that landed the...Ch. 2 - The position of a car in a drag race is measured...Ch. 2 - A fireworks rocket explodes at a height of 82.0 m,...Ch. 2 - The muscles in a grasshoppers legs can propel the...Ch. 2 - On packed snow, computerized antilock brakes can...Ch. 2 - A particle leaves its initial position x0 at time...Ch. 2 - A hockey puck moving at 32 m/s slams through a...Ch. 2 - Amtraks 20th-Century Limited is en route from...Ch. 2 - A jetliner touches down at 220 km/h and comes to a...Ch. 2 - A motorist suddenly notices a stalled car and...Ch. 2 - A racing car undergoing constant acceleration...Ch. 2 - The maximum braking acceleration of a car on a dry...Ch. 2 - After 35 min of running, at the 9-km point in a...Ch. 2 - Youre speeding at 85 km/h when you notice that...Ch. 2 - Airbags cushioned the Mars rover Spirits landing,...Ch. 2 - Calculate the speed with which cesium atoms must...Ch. 2 - A falling object travels one-fourth of its total...Ch. 2 - Youre on a NASA team engineering a probe to land...Ch. 2 - Youre atop a building of height h, and a friend is...Ch. 2 - A castles defenders throw rocks down on their...Ch. 2 - Two divers jump from a 3.00-m platform. One jumps...Ch. 2 - A balloon is rising at 10 m/s when its passenger...Ch. 2 - Landing on the Moon, a spacecraft fires its...Ch. 2 - Youre at mission control for a rocket launch,...Ch. 2 - Youre an investigator for the National...Ch. 2 - You toss a book into your dorm room, just clearing...Ch. 2 - Consider an object traversing a distance L, part...Ch. 2 - A particles position as a function of time is...Ch. 2 - Ice skaters, ballet dancers, and basketball...Ch. 2 - Youre staring idly out your dorm window when you...Ch. 2 - A police radars effective range is 1.0 km, and...Ch. 2 - An object starts moving in a straight line from...Ch. 2 - Youre a consultant on a movie set, and the...Ch. 2 - (a) For the ball in Example 2.6, find its velocity...Ch. 2 - Your roommate is an aspiring novelist and asks...Ch. 2 - You and your roommate plot to drop water balloons...Ch. 2 - Derive Equation 2.10 by integrating Equation 2.7...Ch. 2 - An objects acceleration increases quadratically...Ch. 2 - An objects acceleration is given by the expression...Ch. 2 - An objects acceleration decreases exponentially...Ch. 2 - A ball is dropped from rest at a height li0 above...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...
Additional Science Textbook Solutions
Find more solutions based on key concepts
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
Choose the best answer to each of the following. Explain your reasoning. Based on current data, planetary syste...
Cosmic Perspective Fundamentals
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
WHAT IF? Consider two species that diverged while geographically separated but resumed contact before reproduc...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Children playing in a playground on the flat roof of a city school lose their ball to the parking lot below. One of the teachers kicks the ball back up to the children as shown in the figure below. The playground is 6.10 m above the parking lot, and the school building's vertical wall is h = 7.40 m high, forming a 1.30 m high railing around the playground. The ball is launched at an angle of 8 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Find the speed (in m/s) at which the ball was launched. 18.1 m/s (b) Find the vertical distance (in m) by which the ball clears the wall. 0.73 ✓ m (c) Find the horizontal distance (in m) from the wall to the point on the roof where the ball lands. 2.68 m (d) What If? If the teacher always launches the ball…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at x = d = 0.0100 m. (a) the position of the electron y, = 2.60e1014 m (b) the…arrow_forwardNo chatgpt plsarrow_forward
- need help with the first partarrow_forwardA ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following. (a) the time interval during which the ball is in motion 2R (b) the ball's speed at the peak of its path v= Rg 2 √ sin 26, V 3 (c) the initial vertical component of its velocity Rg sin ei sin 20 (d) its initial speed Rg √ sin 20 × (e) the angle 6, expressed in terms of arctan of a fraction. 1 (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. hmax R2 (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range. Xmax R√3 2arrow_forwardAn outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940arrow_forward
- A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forward
- How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY