Concept explainers
Find the dead loads acting on the girder AE and beam CD.
Answer to Problem 6P
The dead load acting on the beam CD is
Dead load in Girder AE:
The dead load at C, A, and E are
The uniformly distributed load in the girder AE is
Explanation of Solution
Given information:
The thickness of the reinforced concrete slab is
The area of cross-section of the steel floor beam is
The area of cross-section of the steel girder is
The length, height, and thickness of the brick wall are
Calculation:
Show the floor systemof the building as shown in Figure 1.
Refer Figure 1.
The tributary area of the beam CD is represented by the shaded region.
Tributary area of the beam CD:
The width of the tributary area of the beam CD is
The width of the tributary area of the beam CD is same as the length of the beam CD. Then,
The length of the tributary area of the beam CD is
The thickness of the concrete slab is
Refer Table 2.1 “Unit Weights of Construction Materials” in the text book.
The unit weight of the reinforced concrete is
The unit weight of the structural steel is
The unit weight of the brick wall is
Calculate the dead load per unit length of the beam CD as follows:
Concrete Slab:
Calculate the dead load of the concrete slab using the relation:
Substitute
Steel beam:
Calculate the dead load of the steel beam using the relation:
Substitute
Calculate the dead load of the brick wall using the relation:
Calculate the dead load of the beam CD as follows:
The dead load of
Show the dead load acting on the beam as shown in Figure 2.
Refer Figure 2.
The reaction at C and D are denoted by
The dead load on the beam is symmetrical. Then,
Show the dead load acting on the beam as shown in Figure 3.
Refer Figure 3.
Thus, the dead load acting on the beam CD is
Show the floor system of the building as shown in Figure 4.
Refer Figure 4.
Tributary area of the girder AE:
The width of the tributary area of the girder AE is
The width of the tributary area of the girder AE is same as the length of the girder AE. Then,
The length of the tributary area of the girder AE is
The thickness of the reinforced concrete slab is
Calculate the dead load per unit length of the girder AE as follows:
Steel beam:
Calculate the dead load of the girder AE using the relation:
Substitute
Concentrated load at A and E.
Show the tributary area of column at A and E as shown in Figure 5.
Refer Figure 5.
The tributary area of column at A and E are Equal.
The tributary area of column at A and E are
Calculate the concentrated load (P) at the column A and E the using the relation:
Substitute
Refer Figure 3.
The concentrated load at the column C is
Show the loading on the girder AE as shown in Figure 6.
Refer Figure 6.
The reaction at A and E are denoted by
The dead load on the beam is symmetrical. Then,
Show the loading on the girder AE as shown in Figure 7.
Refer Figure 7.
The dead load at C, A, and E are
The uniformly distributed load in the girder AE is
Want to see more full solutions like this?
Chapter 2 Solutions
Structural Analysis, Si Edition
- A square flexible foundation of width B applies a uniform pressure go to the underlying ground. (a) Determine the vertical stress increase at a depth of 0.625B below the center using Aσ beneath the corner of a uniform rectangular load given by Aσ = Variation of Influence Value I qoI. Use the table below. n 0.8 1.0 m 0.2 0.4 0.5 0.6 0.2 0.01790 0.03280 0.03866 0.04348 0.05042 0.05471 0.4 0.03280 0.06024 0.07111 0.08009 0.09314 0.10129 0.5 0.03866 0.07111 0.08403 0.09473 0.11035 0.12018 0.6 0.04348 0.08009 0.09473 0.10688 0.12474 0.13605 0.8 0.05042 0.09314 0.11035 0.12474 0.14607 0.15978 1.0 0.05471 0.10129 0.12018 0.13605 0.15978 0.17522 (Enter your answer to three significant figures.) Ασ/90 = (b) Determine the vertical stress increase at a depth of 0.625B below the center using the 2 : 1 method equation below. 90 x B x L Aσ = (B+ z) (L + z) (Enter your answer to three significant figures.) Ασ/90 = (c) Determine the vertical stress increase at a depth of 0.625B below the center using…arrow_forwardPoint loads of magnitude 100, 200, and 360 act at , , and , respectively (in the figure below). Determine the increase in vertical stress at a depth of 6 below point . Use Boussinesq's equation. (Enter your answer to three significant figures.) =arrow_forwardno chatgpt, show solution. thx^^arrow_forward
- P 20 mm 15 mm 100 mm 200 mm 100 mm 15 mm -450.0 mm- -300.0 mm 300.0 mm -300.0 mm -450.0 mm- 300.0 mm The butt connection shows 8-24mm bolts. Spacing and dimensions are shown in figure PSAD-020. The plate is made of A36 steel. Allowable tensile stress on gross area = 0.6Fy Allowable tensile stress on net area = 0.5Fu Allowable shear stress on net area = 0.3Fu Bolt hole diameter = 26mm Determine the allowable tensile load P based on net area rupture. Determine the allowable tensile load P based on gross area yielding. Determine the allowable tensile load P based on block shear strength. Parrow_forward300 mm P 75 mm -75 mm P I 75 mm 100 mm -125 mm Shown in figure PSAD-022 is a splice connection made of 8-22mm A325 bolts and a PL 300 x 12 mm made of A36 steel, connected back-to-back. The connection joins together two A992 W410X67 (Fy = 50 ksi, Fu = 65 ksi) carrying a tension load P. Assume U = 0.70. Ignore bolt shear failure. Determine the design capacity of the connection based on yielding of the plate. Determine the design capacity of the section based on yielding of the wide flange section. Determine the design capacity of the section based on rupture of the plate. Determine the design capacity of the section based on block shear of the plate.arrow_forwardProperties of L 152 x 152 x 11.1 A = 3280 mm² d = 152 mm t = 11.1 mm x = 41.9 mm Ix=7.33 x 10 mm⭑ Iy = 7.33 x 10 mm Zx=119 x 103 mm³ Sx = 66.5 x 103 mm³ P ° ° ° ° ° ° ° ° P Shown in figure PSAD-021 is a truss joint detail. It makes use of two rows of 22-mm bolts. The members are L 152 x 152 x 11.1 made of A36. The plate connecting the members is a 9mm-thick A36 plate (Fy = 36 ksi, Fu = 58 ksi). Assume that U = 0.85, ignore 85% limit of net area. Determine the effective net area of the section. Determine the allowable capacity of the connection.arrow_forward
- A floor consists of 8 steel beams/girders supporting three 1-way slab panels. The beams are supported on 6 columns around the perimeter of the roof. The roof is subjected to a uniform pressure of 150 psf . All beams and girders weigh 90lb//ft. Use free-body diagrams and statics equations to determine the load and reactions on all the beams (Beam 1, 2, 3 and 4), girders (Girders 1 and 2), and columns (Columns 1, 2 and 3). (we only focused on one-way slabs in the class + pls include FBDs)arrow_forwardDesign an intake tower with gates meet the following requirement: • Normal water surface elevation = 100 m mean sea level • Max. reservoir elevation = 106 m msl • Min. reservoir elevation = 90 m msl • Bottom elevation = 81m msl • Flow rate=57369.6 m³/day.. Velocity = 0.083 m/s ⚫c=0.6, Density for water =1000 kg/m³. Density for concrete =2310 kg/m³ Estimate water elevation that make safety factor =1 ร 4 m Uppr gate 2m 1 m Lower gate 2m Gate 6m 2m 4 m ร 2 m wzarrow_forward4. The storm hyetograph below produced 530 acre-ft of runoff over the 725-acre Green River watershed. Plot the storm hyetograph and compute and plot the excess rainfall hyetograph using the op-index method. Time (hours) 0-33-66-99-12 12-15 Rainfall Intensity (in/hr) 0.2 0.8|1.2 1.8 0.9arrow_forward
- -125 mm -125 mm -125 mm 100 mm P A C 310 x 45 made of A36 is connected to a plate and carries a load P in tension. The bolts are 22-mm in diameter and is staggered as shown in figure PSAD-016. Properties of C 310 x 45 A = 5680 mm² d = 305 mm t = 12.7 mm tw = 13.0 mm b = 80.5 mm x = 17.1 mm Determine the shear lag factor of the channel. Determine the effective net area of the section in mm². Compute the design capacity of the section.arrow_forwardPlease answer the following and show the step by step answer on clear paperarrow_forwardProblem #1 (Beam optimization). Calculate the length "a" of AB such that the bending moment diagram is optimized (the absolute value of the max and the min is at its lowest). Then draw the shear and moment diagram for the optimized length. Optimize the length to the nearest 0.1 m. You can use RISA 2D as a tool to find the optimized length, however you need to solve for the support reactions at A, B and C by hand and draw the shear and moment diagram by hand. w=20 kN/m A + + a 12 m B Carrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningArchitectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning