
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 64RQ
What is a stress–rupture diagram, and how is one developed?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED.
18: Determine the maximum shear and moment that would be experienced by a 10 m beam if a three-wheelmoving load of 10 kN, 30 kN, and 5 kN respectively will pass it by. The distance between the 1st and 2nd load is 1 m and the distance between the 2nd and 3rd load is 3 m.ANS: Vmax = 40 kN ; Mmax = 100.014 kN-m
CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED.
5: A 12-m simply supported bridge is constructed with 100-mm concrete slab deck supported by precastconcrete stringers spaced 800 mm on center. Analyze the stringers when subjected to a moving load consisting of 3 evenly spaced axle loads at 3 m and equivalent to 20 kN, 30 kN and 40 kN respectively. The self-weight of the stringers is 8.5 kN/m and the concrete deck has a unit weight of 24 kN/m3 . Neglect all other superimposed loads. Calculate: (a) the maximum shear force in the stringers; (b) the maximum bending moment in the stringers.
Answer: Vmax = 135.020 KN, Mmax = 477.388 KN-M
CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED.
19: A 22-wheeler truck is crossing over 25 m bridge. The dimensions between the axles of the truck are shownin the figure below. Axles 1 to 3 carry a 90 kN load each, axles 4 and 5 carry a 65 kN load each, and the axle directly below the cab of the truck has a load of 100 kN. Determine the maximum shear and moment on the bridge.ANS: Vmax = 374.92 kN ; Mmax = 1,702.229 kN-m
Chapter 2 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 2 - Prob. 1RQCh. 2 - Provide two definitions of the termÂ...Ch. 2 - Knowledge of what four aspects and their...Ch. 2 - Give an example of how we might take advantage of...Ch. 2 - What are some of the possible property...Ch. 2 - What are some properties commonly associated with...Ch. 2 - What are some of the more common nonmetallic...Ch. 2 - What are some of the important physical properties...Ch. 2 - Why should caution be exercised when applying the...Ch. 2 - What are the standard units used to report stress...
Ch. 2 - What are static properties?Ch. 2 - What is the most common static test to determine...Ch. 2 - What is engineering stress? Engineering strain?...Ch. 2 - What is Youngs modulus or stiffness, and why might...Ch. 2 - What are some of the tensile test properties that...Ch. 2 - Why is it important to specify the offset when...Ch. 2 - How is the offset yield strength determined?Ch. 2 - During the plastic deformation portion of a...Ch. 2 - What are the test conditions associated with...Ch. 2 - How would the tensile test curves differ for a...Ch. 2 - What are two tensile test properties that can be...Ch. 2 - What is uniform elongation, and when might it be...Ch. 2 - Is a brittle material a weak material? What does...Ch. 2 - What is the toughness of a material, and how might...Ch. 2 - What is the difference between true stress and...Ch. 2 - Explain how the plastic portion of a true...Ch. 2 - What is strain hardening or work hardening? How...Ch. 2 - Give examples of applications utilizing high...Ch. 2 - How might tensile test data be misleading for a...Ch. 2 - What type of tests can be used to determine the...Ch. 2 - What are some of the different material...Ch. 2 - What units could be applied to the Brinell...Ch. 2 - Although the Brinell hardness test is simple and...Ch. 2 - What are the similarities and differences between...Ch. 2 - Why are there different Rockwell hardness scales?Ch. 2 - How might hardness tests be used for quality...Ch. 2 - What are the attractive features of the Vickers...Ch. 2 - When might a microhardness test be preferred over...Ch. 2 - What is the attractive feature of the Knoop...Ch. 2 - Why might the various types of hardness tests fail...Ch. 2 - What is the relationship between penetration...Ch. 2 - Describe several types of dynamic loading.Ch. 2 - Why should the results of standardized dynamic...Ch. 2 - What are the two most common types of bending...Ch. 2 - What aspects or features can significantly alter...Ch. 2 - What is notch�sensitivity, and how might it be...Ch. 2 - Which type of dynamic condition accounts for...Ch. 2 - Are the stresses applied during a fatigue test...Ch. 2 - Is a fatigue S–N curve determined from a...Ch. 2 - What is the endurance limit? What occurs when...Ch. 2 - What features may significantly alter the fatigue...Ch. 2 - What relationship can be used to estimate the...Ch. 2 - Describe the growth of a fatigue crack.Ch. 2 - What material, design, or manufacturing features...Ch. 2 - How might the relative sizes of the fatigue region...Ch. 2 - What are fatigue striations, and why do they form?Ch. 2 - Why is it important for a designer or engineer to...Ch. 2 - What mechanical property changes are typically...Ch. 2 - Prob. 59RQCh. 2 - Prob. 60RQCh. 2 - How might the orientation of a piece of metal...Ch. 2 - How might we evaluate the long�term effect of...Ch. 2 - Prob. 63RQCh. 2 - What is a stress–rupture diagram, and how is one...Ch. 2 - Why are terms such as machinability, formability,...Ch. 2 - Prob. 66RQCh. 2 - What are some of the types of flaws or defects...Ch. 2 - What three principal quantities does fracture...Ch. 2 - What is a dormant flaw? A dynamic flaw? How do...Ch. 2 - How is fracture mechanics applied to fatigue...Ch. 2 - What are the three most common thermal properties...Ch. 2 - Describe an engineering application where the...Ch. 2 - Why is it important that property testing be...Ch. 2 - Why is it important to consider the orientation of...Ch. 2 - Select a product or component for which physical...Ch. 2 - Repeat Problem 1 for a product or component...Ch. 2 - Repeat Problem 1 for a product or component...Ch. 2 - A fuel tanker or railroad tanker car has been...Ch. 2 - One of the important considerations when selecting...Ch. 2 - Several of the property tests described in this...Ch. 2 - Steel and aluminum cans that have been submitted...Ch. 2 - Prob. 2CSCh. 2 - Prob. 3CSCh. 2 - Prob. 4CSCh. 2 - Prob. 5CSCh. 2 - Prob. 6CSCh. 2 - Mixed plastic consisting of recyclable...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 1. A H = 6 m cantilever retaining wall is subjected to a soil pressurelinearly varying from zero at the top to 90 kPa at the bottom. As an additionalsupport, it is anchored at depth y = 2 m. with maximum tension equal to 25kN. Assume that the stem provides fully retrained support. Draw the shearand moment diagram of the wall to calculate the following: (a) Maximumpositive bending moment per linear meter; (b) maximum negative bendingmoment per linear meter; (c) maximum shear force per linear meter. answer: +MMax = 440 kn-m, -Mmax = 0kn-M, Vmax = 245 KNarrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 17: A simply supported beam with the section shown below has an allowableflexural shearing stress of 43 MPa. (a) Determine the maximum allowable shearing force onthe section. And (b) what is the minimum thickness of plate that should be welded at theflanges if the section is to withstand a total shearing force of 200 kN. The additional plate willhave its base dimension equal to the flange dimension.ANS: V = 179.333 kN ; t = 23.181 mmarrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. Answer: A = 0.207 L(M)arrow_forward
- Qu 4 The 12-kg slender rod is attached to a spring, which has an unstretched length of 2 m. If the rod is released from rest when 0 = 30°, determine its angular velocity at the instant 0 = 90°. 2 m B k = 40 N/m 2 marrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 13: A cantilever beam is of length 1.5 m,loaded by a concentrated load P at its tip as shown inFig. 8-18(a), and is of circular cross section (R = 100 mm),having two symmetrically placed longitudinal holes asindicated. The material is titanium alloy, having anallowable working stress in bending of 600 MPa.Determine the maximum allowable value of the verticalforce P. ANS: P = 236,589.076 N = 236.589 kNarrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 15: Consider a beam having an I-type cross section as shown in Fig. 8-45. Ashearing force V of 150 kN acts over the section. Determine the maximum and minimumvalues of the shearing stress in the vertical web of the section.ANS: fv(max) = 44.048 MPa ; fv(min) = 33.202 MPaarrow_forward
- CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 12: A steel cantilever beam 16 ft 8 in in length is subjected to a concentrated load of 320 lb acting at the freeend of the bar. A commercially available rolled steel section, designated as W12x32, is used for the beam. Assume that the total depth of the beam is 12 in, and the neutral axis of the section is in the middle. Determine the maximum tensile and compressive stresses. (Properties of commercially available rolled steel section provided in the table. Z = section modulus). ANS: σT = σC = 1,572.482 lb/in2arrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 14: Two ½-in x 8-in cover plates are welded to two channels 10 in high to formthe cross section of the beam shown in Fig. 8-59. Loads are in a vertical plane and bendingtakes place about a horizontal axis. The moment of inertia of each channel about ahorizontal axis through the centroid is 78.5 in4. If the maximum allowable elastic bendingstress is 18,000 lb/in2, determine the maximum bending moment that may be developedin the beam.ANS: 1,236,000 lb-in.arrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 11: A beam of circular cross section is 7 in in diameter. It is simply supported at each end and loaded by twoconcentrated loads of 20,000 lb each, applied 12 in from the ends of the beam. Determine the maximum bending stressin the beam. ANS: σ = 7,127.172 lb/in2arrow_forward
- using the theorem of three moments, find all the reactions and supportsarrow_forward(An ellipsoidal trapping region for the Lorenz equations) Show that there is a certain ellipsoidal region E of the form rx2 + σy2 + σ(z − 2r)2 ≤ C such that all trajectories of the Lorenz equations eventually enter E and stay in there forever. For a much stiffer challenge, try to obtain the smallest possible value of C with this property.arrow_forwardA) In a factory, an s-type pitot tube was used to calculate the velocity of dry air for a point inside a stack. Calculate the velocity at that point (ft/sec) using following conditions: ● • • Pressure = 30.23 ± 0.01 in Hg (ambient) Pitot tube coefficient = 0.847 ± 0.03 Temperature = 122 ± 0.1 F (stack) Temperature = 71.2 ± 0.1 F (ambient) AP = 0.324 ± 0.008 in H2O (pitot tube) • AP = 0.891 ± 0.002 in H2O (stack) B) Find the dominant error(s) when determining precision for the problem. C) For part A, what is the precision in ft/sec for the velocity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY