College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 63PE
To determine
The displacement graph for the subway shuttle train.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Beretta Model 92S (the standard-issue U.S. army pistol) has a barrel 127 mmmm long. The bullets leave this barrel with a muzzle velocity of 349 m/sm/s.
1) What is the acceleration of the bullet while it is in the barrel, assuming it to be constant?
Express your answer in meters per second squared.
2) What is the acceleration of the bullet while it is in the barrel, assuming it to be constant?
Express your answer as a multiple of acceleration due to gravity g.
3) For how long is the bullet in the barrel?
Express your answer in seconds.
When given a velocity vs. time graph, draw the corresponding position vs. time and acceleration vs. time graphs. Graphs should include labels (including numerical values and correct units) for both the horizontal and vertical axes. The values don't have to be exactly right, but they should be relatively close. If possible, find the slope and apply it to a real life situation.
A ball on a table rolls 50 cm to the tables edge, drops 30 cm to the ground, and then continues to roll for 75 cm until eventually coming to a stop. What is the magnitude and direction of the ball’s displacement, in cm (that is, how far is it from where it started)? Use a drawing with variables clearly labeled
Chapter 2 Solutions
College Physics
Ch. 2 - Give an example in which there are clear...Ch. 2 - Under what circumstances does distance traveled...Ch. 2 - Bacteria move back and f01th by using their...Ch. 2 - A student writes, "A bird that is diving for prey...Ch. 2 - What is the speed of the bird in Exercise 2.4?Ch. 2 - Acceleration is the change in velocity over time....Ch. 2 - A weather forecast states that the temperature is...Ch. 2 - Give an example (but not one from the text) of a...Ch. 2 - There is a distinction between average speed and...Ch. 2 - Does a car's odometer measure position or...
Ch. 2 - If you divide the total distance traveled on a car...Ch. 2 - How are instantaneous velocity and instantaneous...Ch. 2 - Is it possible for speed to be constant while...Ch. 2 - Is it possible for velocity to be constant while...Ch. 2 - Give an example in which velocity is zero yet...Ch. 2 - If a subway train is moving to the left (has a...Ch. 2 - Plus and minus signs are used in one-dimensional...Ch. 2 - What information do you need in order to choose...Ch. 2 - What is the last thing you should do when solving...Ch. 2 - What is the acceleration of a rock thrown straight...Ch. 2 - An object that is thrown straight up falls back to...Ch. 2 - Prob. 22CQCh. 2 - If an object is thrown straight up and air...Ch. 2 - The severity of a fall depends on your speed when...Ch. 2 - How many times higher could an astronaut jump on...Ch. 2 - Prob. 26CQCh. 2 - Prob. 27CQCh. 2 - Prob. 28CQCh. 2 - Prob. 29CQCh. 2 - Prob. 30CQCh. 2 - A cylinder is given a push and then rolls up an...Ch. 2 - Prob. 1PECh. 2 - Prob. 2PECh. 2 - Prob. 3PECh. 2 - Prob. 4PECh. 2 - (a) Calculate Earth's average speed relative to...Ch. 2 - A helicopter blade spins at exactly 100...Ch. 2 - The North American and European continents are...Ch. 2 - Land west of the San Andreas fault in southern...Ch. 2 - On May 26, 1934, a streamlined, stainless steel...Ch. 2 - Tidal friction is slowing the rotation of the...Ch. 2 - A student drove to the university from her home...Ch. 2 - The speed of propagation of the action potential...Ch. 2 - Conversations with astronauts on the lunar surface...Ch. 2 - A football quarterback runs 15.0 m straight down...Ch. 2 - The planetary model of the atom pictures electrons...Ch. 2 - A cheetah can accelerate from rest to a speed of...Ch. 2 - Professional Application Dr. John Paul Stapp was...Ch. 2 - A commuter backs her car out of her garage with an...Ch. 2 - Assume that an intercontinental ballistic missile...Ch. 2 - An Olympic-class sprinter starts a race with an...Ch. 2 - A well-thrown ball is caught in a well-padded...Ch. 2 - A bullet in a gun is accelerated from the firing...Ch. 2 - (a) A light-rail commuter train accelerates at a...Ch. 2 - While entering a freeway, a car accelerates from...Ch. 2 - At the end of a race, a runner decelerates from a...Ch. 2 - Professional Application: Blood is accelerated...Ch. 2 - In a slap shot, a hockey player accelerates the...Ch. 2 - A powerful motorcycle can accelerate from rest to...Ch. 2 - Freight trains can produce only relatively small...Ch. 2 - A fireworks shell is accelerated from rest to a...Ch. 2 - A swan on a lake gets airborne by flapping its...Ch. 2 - Professional Application: A woodpecker's brain is...Ch. 2 - An unwary football player collides with a padded...Ch. 2 - In World War II, there were several reported cases...Ch. 2 - Consider a grey squirrel falling out of a tree to...Ch. 2 - An express train passes through a station. It...Ch. 2 - Dragsters can actually reach a top speed of 145...Ch. 2 - A bicycle racer sprints at the end of a race to...Ch. 2 - In 1967, New Zealander Burt Munro set the world...Ch. 2 - (a) A world record was set for the men's 100-m...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - Calculate the displacement and velocity at times...Ch. 2 - A basketball referee tosses the ball straight up...Ch. 2 - A rescue helicopter is hovering over a person...Ch. 2 - A dolphin in an aquatic show jumps straight up out...Ch. 2 - A swimmer bounces straight up from a diving board...Ch. 2 - (a) Calculate the height of a cliff if it takes...Ch. 2 - A very strong, but inept, shot putter puts the...Ch. 2 - You throw a ball straight up with an initial...Ch. 2 - A kangaroo can jump over an object 2.50 m high....Ch. 2 - Standing at the base of one of the cliffs of Mt....Ch. 2 - An object is dropped from a height of 75.0 m above...Ch. 2 - There is a 250-m-high cliff at Half Dome in...Ch. 2 - Prob. 54PECh. 2 - Suppose you drop a rock into a dark well and,...Ch. 2 - A steel ball is dropped onto a hard floor from a...Ch. 2 - A coin is dropped from a hot-air balloon that is...Ch. 2 - A soft tennis ball is dropped onto a hard floor...Ch. 2 - Prob. 59PECh. 2 - Prob. 60PECh. 2 - Prob. 61PECh. 2 - Prob. 62PECh. 2 - Prob. 63PECh. 2 - Prob. 64PECh. 2 - Prob. 65PECh. 2 - Prob. 66PECh. 2 - Prob. 1TPCh. 2 - Prob. 2TPCh. 2 - Prob. 3TPCh. 2 - Prob. 4TPCh. 2 - Prob. 5TPCh. 2 - Prob. 6TPCh. 2 - Prob. 7TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The acceleration of a particle is given by a = 2t - 15, where a is in meters per second squared and t is in seconds. Determine the velocity and displacement as functions of time. The initial displacement at t = 0 is 5o = -6 m, and the initial velocity is vo= 5 m/s. Once you have determined the functions of time, answer the questions. Questions: When t = 4.9 s, S= i V= a= i i m m/s m/s²arrow_forwardThe displacement of a particle is given by s = 4t³ - 60t² + 100t -58 where s is in feet and t is in seconds. Plot the displacement, velocity, and acceleration as functions of time for the first 13 seconds of motion. After you have made the plots, answer the questions. Questions: At t = 1.8 S= i fty = i ft/seca = i ft/ser sec, At t = 6.6 i S= fty = i ft/seca = i ft/se sec, Att = 9.8 sec, i fty = ft/seca = S = i ft/ser The velocity is zero when t = i sec and when t = secarrow_forwardThe velocity of a particle is given by v = 23t2 - 110t + 52, where v is in meters per second and t is in seconds. Plot the velocity v and acceleration a versus time for the first 6.4 seconds of motion and evaluate the velocity when a is zero. Make the plots and then answer the questions. Questions: When t = 0.8 s, V = i m/s, a = i m/s2 When t = 3.7 s, V = i m/s, a = i m/s? When t = 4.7 s, V = i m/s, a = i m/s? When a = 0, V = m/sarrow_forward
- Concept Simulation 2.3 offers a useful review of the concepts central to this problem. An astronaut on a distant planet wants to determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of +12.9 m/s and measures a time of 24.8 s before the rock returns to his hand. What is the acceleration (magnitude and direction) due to gravity on this planet? (positive = up, negative = down) Number -48.2 Units m/s^2arrow_forwardAn object moves in one dimensional motion with constant acceleration a = 4.5 m/s². At time t = 0 s, the object is at xo = 2.9 m and has an initial velocity of vo = 4 m/s. How far will the object move before it achieves a velocity of v = 7 m/s? Your answer should be accurate to the nearest 0.1 m.arrow_forwardSpaceman Spiff is stranded on an alien planet. In order to repair his spaceship, he needs to know what the acceleration due to gravity is on the planet. Spiff stands ona a cliff, throws a rock horizontally, and measures the time it takes to hit the ground 20m below. His data is shown in the following table. Calculate the acceleration due to gravity on this planet. Plot the velocity as a function of time. Can you show all the calculations please?arrow_forward
- A model rocket accelerates upward from the ground with a constant acceleration, reaching a height of 1000 m in 10 s. a) What is the speed (in m/s) at a height of 1000 m? b) What is the acceleration (in m/s 2)?arrow_forwardI am doing a lab report for my physics class. The lab consists of throwing a ball upward and recording its movements. Please explain these next questions and how you got the answer. Determine the launch velocity of the ball from the velocity vs. time graphs in the x and y directions. Is this value reasonable? Determine the velocity of the ball at its highest point. Is this value reasonable?arrow_forwardFundamentals of Kinematics A.) Consider a particle moving in a straight line and assume that it's position is defined by the equation x = 6t2 - t3 (^-exponent). t is in sec and x is in meters. What is it's velocity at t = 3 sec? What is it's acceleration at t = 1.5 sec? And what is the total displacement at t = 3 sec?arrow_forward
- We are standing on the top of a 1040 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = 16t? + 128t + 1040. A) What is the object initial velocity? ft/second B) What is the highest point that the object reaches? feetarrow_forwardPedro is driving a motorcycle along Espana boulevard. His position (in meters) at any given time is given by . Pedro's initial position is m. His position at ten seconds is m. His speed at ten seconds is m/s. His acceleration at ten seconds is m/s2. Marites is also driving her motorcycle along Espana. Her position function is of the form . What is the coefficient if her acceleration at ten seconds is 2.04 m/s2? m/s4arrow_forwardThe position vector as a function of time of an object moving along a circular path is given by * (t) = -cos tî – sintĵ 2.1 Show that the object moves on a circular path of radius 1. 2.2 Is the object moving with constant velocity? Support your answer with a calculation. 2.3 Show that the angle between the objects' acceleration and position vector is r. 2.4 Determine the object's acceleration at t = T s. 2.5 Is the object moving with constant acceleration? Support your answer with a calculation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY